Spring Sale Special - Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: mxmas70

Home > Amazon Web Services > AWS Certified Professional > SAP-C02

SAP-C02 AWS Certified Solutions Architect - Professional Question and Answers

Question # 4

A solutions architect is planning to migrate critical Microsoft SOL Server databases to AWS. Because the databases are legacy systems, the solutions architect will move the databases to a modern data architecture. The solutions architect must migrate the databases with near-zero downtime.

Which solution will meet these requirements?

A.

Use AWS Application Migration Service and the AWS Schema Conversion Tool (AWS SCT). Perform an In-place upgrade before the migration. Export the migrated data to Amazon Aurora Serverless after cutover. Repoint the applications to Amazon Aurora.

B.

Use AWS Database Migration Service (AWS DMS) to Rehost the database. Set Amazon S3 as a target. Set up change data capture (CDC) replication. When the source and destination are fully synchronized, load the data from Amazon S3 into an Amazon RDS for Microsoft SQL Server DB Instance.

C.

Use native database high availability tools Connect the source system to an Amazon RDS for Microsoft SQL Server DB instance Configure replication accordingly. When data replication is finished, transition the workload to an Amazon RDS for Microsoft SQL Server DB instance.

D.

Use AWS Application Migration Service. Rehost the database server on Amazon EC2. When data replication is finished, detach the database and move the database to an Amazon RDS for Microsoft SQL Server DB instance. Reattach the database and then cut over all networking.

Full Access
Question # 5

A company is running a workload that consists of thousands of Amazon EC2 instances. The workload is running in a VPC that contains several public subnets and private subnets. The public subnets have a route for 0.0.0.0/0 to an existing internet gateway. The private subnets have a route for 0.0.0.0/0 to an existing NAT gateway.

A solutions architect needs to migrate the entire fleet of EC2 instances to use IPv6. The EC2 instances that are in private subnets must not be accessible from the public internet.

What should the solutions architect do to meet these requirements?

A.

Update the existing VPC, and associate a custom IPv6 CIDR block with the VPC and all subnets. Update all the VPC route tables, and add a route for ::/0 to the internet gateway.

B.

Update the existing VPC, and associate an Amazon-provided IPv6 CIDR block with the VPC and all subnets. Update the VPC route tables for all private subnets, and add a route for ::/0 to the NAT gateway.

C.

Update the existing VPC, and associate an Amazon-provided IPv6 CIDR block with the VPC and all subnets. Create an egress-only internet gateway. Update the VPC route tables for all private subnets, and add a route for ::/0 to the egress-only internet gateway.

D.

Update the existing VPC, and associate a custom IPv6 CIDR block with the VPC and all subnets. Create a new NAT gateway, and enable IPv6 support. Update the VPC route tables for all private subnets, and add a route for ::/0 to the IPv6-enabled NAT gateway.

Full Access
Question # 6

A software as a service (SaaS) company uses AWS to host a service that is powered by AWS PrivateLink. The service consists of proprietary software that runs on three Amazon EC2 instances behind a Network Load Balancer (NL B). The instances are in private subnets in multiple Availability Zones in the eu-west-2 Region. All the company's customers are in eu-west-2.

However, the company now acquires a new customer in the us-east-I Region. The company creates a new VPC and new subnets in us-east-I. The company establishes

inter-Region VPC peering between the VPCs in the two Regions.

The company wants to give the new customer access to the SaaS service, but the company does not want to immediately deploy new EC2 resources in us-east-I

Which solution will meet these requirements?

A.

Configure a PrivateLink endpoint service in us-east-I to use the existing NL B that is in eu-west-2. Grant specific AWS accounts access to connect to theSaaS service.

B.

Create an NL B in us-east-I . Create an IP target group that uses the IP addresses of the company's instances in eu-west-2 that host the SaaS service.Configure a PrivateLink endpoint service that uses the NLB that is in us-east-I . Grant specific AWS accounts access to connect to the SaaS service.

C.

Create an Application Load Balancer (ALB) in front of the EC2 instances in eu-west-2. Create an NLB in us-east-I . Associate the NLB that is in us-east-Iwith an ALB target group that uses the ALB that is in eu-west-2. Configure a PrivateLink endpoint service that uses the NLB that is in us-east-I . Grantspecific AWS accounts access to connect to the SaaS service.

D.

Use AWS Resource Access Manager (AWS RAM) to share the EC2 instances that are in eu-west-2. In us-east-I , create an NLB and an instance targetgroup that includes the shared EC2 instances from eu-west-2. Configure a PrivateLink endpoint service that uses the NL B that is in us-east-I. Grant specific AWS accounts access to connect to the SaaS service.

Full Access
Question # 7

Question:

A company runs a Linux app on Amazon EKS usingM6iEC2 instances under a Savings Plan that is about to expire. They want toreduce costsafter expiration.

A.

Rebuild containers forARM64architecture.

B.

Rebuild containers for container compatibility (invalid/unclear).

C.

Migrate EKS nodes toGraviton(e.g., C7g, M7g).

D.

Replace nodes with latestx86_64instances.

E.

Purchase new Savings Plan for Graviton instance family.

F.

Purchase new Savings Plan for x86_64 instances.

Full Access
Question # 8

A company has developed a hybrid solution between its data center and AWS. The company uses Amazon VPC and Amazon EC2 instances that send application logs to Amazon CloudWatch. The EC2 instances read data from multiple relational databases that are hosted on premises.

The company wants to monitor which EC2 instances are connected to the databases in near real time. The company already has a monitoring solution that uses Splunk on premises. A solutions architect needs to determine how to send networking traffic to Splunk.

How should the solutions architect meet these requirements?

A.

Enable VPC flow logs and send them to CloudWatch. Create an AWS Lambda function to periodically export the CloudWatch logs to an Amazon S3 bucket by using the predefined export function. Generate ACCESS_KEY and SECRET_KEY AWS credentials. Configure Splunk to pull the logs from the S3 bucket by using those credentials.

B.

Create an Amazon Data Firehose delivery stream with Splunk as the destination. Configure a pre-processing AWS Lambda function with a Firehose stream processor that extracts individual log events from records sent by CloudWatch Logs subscription filters. Enable VPC flow logs and send them to CloudWatch. Create a CloudWatch Logs subscription that sends log events to the Firehose delivery stream.

C.

Ask the company to log every request that is made to the databases along with the EC2 instance IP address. Export the CloudWatch logs to an Amazon S3 bucket. Use Amazon Athena to query the logs grouped by database name. Export Athena results to another S3 bucket. Invoke an AWS Lambda function to automatically send any new file that is put in the S3 bucket to Splunk.

D.

Send the CloudWatch logs to an Amazon Kinesis data stream with Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics). Configure a 1-minute sliding window to collect the events. Create a SQL query that uses the anomaly detection template to monitor any networking traffic anomalies in near real time. Send the result to an Amazon Data Firehose delivery stream with Splunk as the destination.

Full Access
Question # 9

Question:

A company uses IAM Identity Center for data scientist access. Each user should be able to accessonly their own datain an S3 bucket. The company also needs to generatemonthly access reportsper user.

Options:

A.

Use IAM Identity Center permission sets to allow S3 access scoped to userName tag.

B.

Use a shared IAM Identity Center role for all users and bucket policy.

C.

Use AWS CloudTrail to log S3 data events, query via Athena.

D.

Use CloudTrail management events to CloudWatch, then use Athena.

E.

Use S3 access logs and S3 Select for reporting.

Full Access
Question # 10

A data analytics company has an Amazon Redshift cluster that consists of several reserved nodes. The cluster is experiencing unexpected bursts of usage because a team of employees is compiling a deep audit analysis report. The queries to generate the report are complex read queries and are CPU intensive.

Business requirements dictate that the cluster must be able to service read and write queries at all times. A solutions architect must devise a solution that accommodates the bursts of usage.

Which solution meets these requirements MOST cost-effectively?

A.

Provision an Amazon EMR cluster. Offload the complex data processing tasks.

B.

Deploy an AWS Lambda function to add capacity to the Amazon Redshift cluster by using a classic resize operation when the cluster's CPU metrics in Amazon CloudWatch reach 80%.

C.

Deploy an AWS Lambda function to add capacity to the Amazon Redshift cluster by using an elastic resize operation when the cluster's CPU metrics in Amazon CloudWatch reach 80%.

D.

Turn on the Concurrency Scaling feature for the Amazon Redshift cluster.

Full Access
Question # 11

A company is using AWS Organizations to manage multiple accounts Due to regulatory requirements, the company wants to restrict specific member accounts to certain AWS Regions, where they are permitted to deploy resources The resources in the accounts must be tagged enforced based on a group standard and centrally managed with minimal configuration.

What should a solutions architect do to meet these requirements'?

A.

Create an AWS Config rule in the specific member accounts to limit Regions and apply a tag policy.

B.

From the AWS Billing and Cost Management console in the management account, disable Regions for the specific member accounts and apply a tag policy on the root.

C.

Associate the specific member accounts with the root Apply a tag policy and an SCP using conditions to limit Regions.

D.

Associate the specific member accounts with a new OU. Apply a tag policy and an SCP using conditions to limit Regions.

Full Access
Question # 12

A company is using AWS CodePipeline for the CI/CD of an application to an Amazon EC2 Auto Scaling group. All AWS resources are defined in AWS

CloudFormation templates. The application artifacts are stored in an Amazon S3 bucket and deployed to the Auto Scaling group using instance user data scripts.

As the application has become more complex, recent resource changes in the CloudFormation templates have caused unplanned downtime.

How should a solutions architect improve the CI/CD pipeline to reduce the likelihood that changes in the templates will cause downtime?

A.

Adapt the deployment scripts to detect and report CloudFormation error conditions when performing deployments. Write test plans for a testing team to execute in a non-production environment before approving the change for production.

B.

Implement automated testing using AWS CodeBuild in a test environment. Use CloudFormation change sets to evaluate changes before deployment. Use AWS CodeDeploy to leverage blue/green deployment patterns to allow evaluations and the ability to revert changes, if needed.

C.

Use plugins for the integrated development environment (IDE) to check the templates for errors, and use the AWS CLI to validate that the templates are correct. Adapt the deployment code to check for error conditions and generate notifications on errors. Deploy to a test environment and execute a manual test plan before approving the change for production.

D.

Use AWS CodeDeploy and a blue/green deployment pattern with CloudFormation to replace the user data deployment scripts. Have the operators log in to running instances and go through a manual test plan to verify the application is running as expected.

Full Access
Question # 13

A company has applications in an AWS account that is named Source. The account is in an organization in AWS Organizations. One of the applications uses AWS Lambda functions and store’s inventory data in an Amazon Aurora database. The application deploys the Lambda functions by using a deployment package. The company has configured automated backups for Aurora.

The company wants to migrate the Lambda functions and the Aurora database to a new AWS account that is named Target. The application processes critical data, so the company must minimize downtime.

Which solution will meet these requirements?

A.

Download the Lambda function deployment package from the Source account. Use the deployment package and create new Lambda functions in the Target account. Share the automated Aurora DB cluster snapshot with the Target account.

B.

Download the Lambda function deployment package from the Source account. Use the deployment package and create new Lambda functions in the Target account Share the Aurora DB cluster with the Target account by using AWS Resource Access Manager {AWS RAM). Grant the Target account permission to clone the Aurora DB cluster.

C.

Use AWS Resource Access Manager (AWS RAM) to share the Lambda functions and the Aurora DB cluster with the Target account. Grant the Target account permission to clone the Aurora DB cluster.

D.

Use AWS Resource Access Manager (AWS RAM) to share the Lambda functions with the Target account. Share the automated Aurora DB cluster snapshot with the Target account.

Full Access
Question # 14

A company wants to run a custom network analysis software package to inspect traffic as traffic leaves and enters a VPC. The company has deployed the solution by using AWS Cloud Formation on three Amazon EC2 instances in an Auto Scaling group. All network routing has been established to direct traffic to the EC2 instances.

Whenever the analysis software stops working, the Auto Scaling group replaces an instance. The network routes are not updated when the instance replacement occurs.

Which combination of steps will resolve this issue? {Select THREE.)

A.

Create alarms based on EC2 status check metrics that will cause the Auto Scaling group to replace the failed instance.

B.

Update the Cloud Formation template to install the Amazon CloudWatch agent on the EC2 instances. Configure the CloudWatch agent to send process metrics for the application.

C.

Update the Cloud Formation template to install AWS Systems Manager Agent on the EC2 instances. Configure Systems Manager Agent to send process metrics for the application.

D.

Create an alarm for the custom metric in Amazon CloudWatch for the failure scenarios. Configure the alarm to publish a message to an Amazon Simple Notification Service {Amazon SNS) topic.

E.

Create an AWS Lambda function that responds to the Amazon Simple Notification Service (Amazon SNS) message to take the instance out of service. Update the network routes to point to the replacement instance.

F.

In the Cloud Formation template, write a condition that updates the network routes when a replacement instance is launched.

Full Access
Question # 15

A company has an application that runs on Amazon EC2 instances in an Amazon EC2 Auto Scaling group. The company uses AWS CodePipeline to deploy the application. The instances that run in the Auto Scaling group are constantly changing because of scaling events.

When the company deploys new application code versions, the company installs the AWS CodeDeploy agent on any new target EC2 instances and associates the instances with the CodeDeploy deployment group. The application is set to go live within the next 24 hours.

What should a solutions architect recommend to automate the application deployment process with the LEAST amount of operational overhead?

A.

Configure Amazon EventBridge to invoke an AWS Lambda function when a new EC2 instance is launched into the Auto Scaling group. Code the Lambda function to associate the EC2 instances with the CodeDeploy deployment group.

B.

Write a script to suspend Amazon EC2 Auto Scaling operations before the deployment of new code When the deployment is complete, create a new AMI and configure the Auto Scaling group's launch template to use the new AMI for new launches. Resume Amazon EC2 Auto Scaling operations.

C.

Create a new AWS CodeBuild project that creates a new AMI that contains the new code Configure CodeBuild to update the Auto Scaling group's launch template to the new AMI. Run an Amazon EC2 Auto Scaling instance refresh operation.

D.

Create a new AMI that has the CodeDeploy agent installed. Configure the Auto Scaling group's launch template to use the new AMI. Associate the CodeDeploy deployment group with the Auto Scaling group instead of the EC2 instances.

Full Access
Question # 16

Question:

A company has an application that uses AWS Key Management Service (AWS KMS) to encrypt and decrypt data. The application stores data in an Amazon S3 bucket in an AWS Region. Company security policies require that the data is encryptedbeforebeing uploaded to S3, and decryptedwhen read. The S3 bucket isreplicated to other AWS Regions.

A solutions architect must design a solution so that the application canencrypt and decrypt data across Regionsusingthe same key.

Options:

A.

Create a KMS multi-Region primary key. Use it to create KMS multi-Region replica keys in each Region. Update application code to use the replica key in each Region.

B.

Create a new customer-managed KMS key in each additional Region. Update application code to use the key in each Region.

C.

Use AWS Private CA to issue TLS certificates and replicate them with AWS RAM.

D.

Export the KMS key material to Systems Manager Parameter Store in each Region. Update the app to use those.

Full Access
Question # 17

A Solutions Architect wants to make sure that only AWS users or roles with suitable permissions can access a new Amazon API Gateway endpoint. The Solutions

Architect wants an end-to-end view of each request to analyze the latency of the request and create service maps.

How can the Solutions Architect design the API Gateway access control and perform request inspections?

A.

For the API Gateway method, set the authorization to AWS_IAM. Then, give the IAM user or role execute-api:Invoke permission on the REST API resource. Enable the API caller to sign requests with AWS Signature when accessing the endpoint. Use AWS X-Ray to trace and analyze user requests to API Gateway.

B.

For the API Gateway resource, set CORS to enabled and only return the company's domain in Access-Control-Allow-Origin headers. Then, give the IAM user or role execute-api:Invoke permission on the REST API resource. Use Amazon CloudWatch to trace and analyze user requests to API Gateway.

C.

Create an AWS Lambda function as the custom authorizer, ask the API client to pass the key and secret when making the call, and then use Lambda to validate the key/secret pair against the IAM system. Use AWS X-Ray to trace and analyze user requests to API Gateway.

D.

Create a client certificate for API Gateway. Distribute the certificate to the AWS users and roles that need to access the endpoint. Enable the API caller to pass the client certificate when accessing the endpoint. Use Amazon CloudWatch to trace and analyze user requests to API Gateway.

Full Access
Question # 18

A retail company is mounting IoT sensors in all of its stores worldwide. During the manufacturing of each sensor, the company's private certificate authority (CA) issues an X.509 certificate that contains a unique serial number. The company then deploys each certificate to its respective sensor.

A solutions architect needs to give the sensors the ability to send data to AWS after they are installed. Sensors must not be able to send data to AWS until they are installed.

Which solution will meet these requirements?

A.

Create an AWS Lambda function that can validate the serial number. Create an AWS IoT Core provisioning template. Include the SerialNumber parameter in the Parameters section. Add the Lambda function as a pre-provisioning hook. During manufacturing, call the RegisterThing API operation and specify the template and parameters.

B.

Create an AWS Step Functions state machine that can validate the serial number. Create an AWS IoT Core provisioning template. Include the SerialNumber parameter in the Parameters section. Specify the Step Functions state machine to validate parameters. Call the StartThingRegistrationTask API operation during installation.

C.

Create an AWS Lambda function that can validate the serial number. Create an AWS IoT Core provisioning template. Include the SerialNumber parameter in the Parameters section. Add the Lambda function as a pre-provisioning hook. Register the CA with AWS IoT Core, specify the provisioning template, and set the allow-auto-registration parameter.

D.

Create an AWS IoT Core provisioning template. Include the SerialNumber parameter in the Parameters section. Include parameter validation in the template. Provision a claim certificate and a private key for each device that uses the CA. Grant AWS IoT Core service permissions to update AWS IoT things during provisioning.

Full Access
Question # 19

A solutions architect works for a government agency that has strict disaster recovery requirements. All Amazon Elastic Block Store (Amazon EBS) snapshots are required to be saved in at least two additional AWS Regions. The agency also is required to maintain the lowest possible operational overhead.

Which solution meets these requirements?

A.

Configure a policy in Amazon Data Lifecycle Manager (Amazon DLM) to run once daily to copy the EBS snapshots to the additional Regions.

B.

Use Amazon EventBridge (Amazon CloudWatch Events) to schedule an AWS Lambda function to copy the EBS snapshots to the additional Regions.

C.

Set up AWS Backup to create the EBS snapshots. Configure Amazon S3 cross-Region replication to copy the EBS snapshots to the additional Regions.

D.

Schedule Amazon EC2 Image Builder to run once daily to create an AMI and copy the AMI to the additional Regions

Full Access
Question # 20

A company is running an application on Amazon EC2 instances in the AWS Cloud. The application is using a MongoDB database with a replica set as its data tier. The MongoDB database is installed on systems in the company's on-premises data center and is accessible through an AWS Direct Connect connection to the data center environment.

A solutions architect must migrate the on-premises MongoDB database to Amazon DocumentDB (with MongoDB compatibility).

Which strategy should the solutions architect choose to perform this migration?

A.

Create a fleet of EC2 instances. Install MongoDB Community Edition on the EC2 instances, and create a database. Configure continuous synchronous replication with the database that is running in the on-premises data center.

B.

Create an AWS Database Migration Service (AWS DMS) replication instance. Create a source endpoint for the on-premises MongoDB database by using change data capture (CDC). Create a target endpoint for the Amazon DocumentDB database. Create and run a DMS migration task.

C.

Create a data migration pipeline by using AWS Data Pipeline. Define data nodes for the on-premises MongoDB database and the Amazon DocumentDB database. Create a scheduled task to run the data pipeline.

D.

Create a source endpoint for the on-premises MongoDB database by using AWS Glue crawlers. Configure continuous asynchronous replication between the MongoDB database and the Amazon DocumentDB database.

Full Access
Question # 21

A company has a website that serves many visitors. The company deploys a backend service for the website in a primary AWS Region and a disaster recovery (DR) Region.

A single Amazon CloudFront distribution is deployed for the website. The company creates an Amazon Route 53 record set with health checks and a failover routing policy for the primary Region's backend service. The company configures the Route 53 record set as an origin for the CloudFront distribution. The company configures another record set that points to the backend service's endpoint in the DR Region as a secondary failover record type. The TTL for both record sets is 60 seconds.

Currently, failover takes more than 1 minute. A solutions architect must design a solution that will provide the fastest failover time.

Which solution will achieve this goal?

A.

Deploy an additional CloudFront distribution. Create a new Route 53 failover record set with health checks for both CloudFront distributions.

B.

Set the TTL to 1 second for the existing Route 53 record sets that are used for the backend service in each Region.

C.

Create new record sets for the backend services by using a latency routing policy. Use the record sets as an origin in the CloudFront distribution.

D.

Create a CloudFront origin group that includes two origins, one for each backend service Region. Configure origin failover as a cache behavior for the CloudFront distribution.

Full Access
Question # 22

A company has multiple AWS accounts and manages these accounts with AWS Organizations. A developer was given IAM user credentials to access AWS resources. The developer should have read-only access to all Amazon S3 buckets in the account. However, when the developer tries to access the S3 buckets from the console, they receive an access denied error message with no buckets listed.

A solutions architect reviews the permissions and finds that the developer's IAM user is listed as having read-only access to all S3 buckets in the account.

Which additional steps should the solutions architect take to troubleshoot the issue? (Select TWO.)

A.

Check the bucket policies for all S3 buckets.

B.

Check the ACLs for all S3 buckets.

C.

Check the SCPs set at the organizational units (OUs).

D.

Check for the permissions boundaries set for the IAM user.

E.

Check if an appropriate IAM role is attached to the IAM user.

Full Access
Question # 23

A company is developing a new on-demand video application that is based on microservices. The application will have 5 million users at launch and will have 30 million users after 6 months. The company has deployed the application on Amazon Elastic Container Service (Amazon ECS) on AWS Fargate. The company developed the application by using ECS services that use the HTTPS protocol.

A solutions architect needs to implement updates to the application by using blue/green deployments. The solution must distribute traffic to each ECS service through a load balancer. The application must automatically adjust the number of tasks in response to an Amazon CloudWatch alarm.

Which solution will meet these requirements?

A.

Configure the ECS services to use the blue/green deployment type and a Network Load Balancer. Request increases to the service quota for tasks per service to meet the demand.

B.

Configure the ECS services to use the blue/green deployment type and a Network Load Balancer. Implement an Auto Scaling group for each ECS service by using the Cluster Autoscaler.

C.

Configure the ECS services to use the blue/green deployment type and an Application Load Balancer. Implement an Auto Seating group for each ECS service by using the Cluster Autoscaler.

D.

Configure the ECS services to use the blue/green deployment type and an Application Load Balancer. Implement Service Auto Scaling for each ECS service.

Full Access
Question # 24

A company needs to aggregate Amazon CloudWatch logs from its AWS accounts into one central logging account. The collected logs must remain in the AWS Region of

creation. The central logging account will then process the logs, normalize the logs into standard output format, and stream the output logs to a security tool for more processing.

A solutions architect must design a solution that can handle a large volume of logging data that needs to be ingested. Less logging will occur outside normal business hours than during normal business hours. The logging solution must scale with the anticipated load. The solutions architect has decided to use an AWS Control Tower design to handle the multi-account logging process.

Which combination of steps should the solutions architect take to meet the requirements? (Select THREE.)

A.

Create a destination Amazon Kinesis data stream in the central logging account.

B.

Create a destination Amazon Simple Queue Service (Amazon SQS) queue in the central logging account.

C.

Create an IAM role that grants Amazon CloudWatch Logs the permission to add data to the Amazon Kinesis data stream. Create a trust policy. Specify thetrust policy in the IAM role. In each member account, create a subscription filter for each log group to send data to the Kinesis data stream.

D.

Create an IAM role that grants Amazon CloudWatch Logs the permission to add data to the Amazon Simple Queue Service (Amazon SQS) queue. Create atrust policy. Specify the trust policy in the IAM role. In each member account, create a single subscription filter for all log groups to send datato the SQSqueue.

E.

Create an AWS Lambda function. Program the Lambda function to normalize the logs in the central logging account and to write the logs to the security tool.

F.

Create an AWS Lambda function. Program the Lambda function to normalize the logs in the member accounts and to write the logs to the security tool.

Full Access
Question # 25

A company provides a centralized Amazon EC2 application hosted in a single shared VPC The centralized application must be accessible from client applications running in the VPCs of other business units The centralized application front end is configured with a Network Load Balancer (NLB) for scalability

Up to 10 business unit VPCs will need to be connected to the shared VPC Some ot the business unit VPC CIDR blocks overlap with the shared VPC and some overlap with each other Network connectivity to the centralized application in the shared VPC should be allowed from authorized business unit VPCs only

Which network configuration should a solutions architect use to provide connectivity from the client applications in the business unit VPCs to the centralized application in the shared VPC?

A.

Create an AWS Transit Gateway Attach the shared VPC and the authorized business unit VPCs to the transit gateway Create a single transit gateway route table and associate it with all of the attached VPCs Allow automatic propagation of routes from the attachments into the route table Configure VPC routing tables to send traffic to the transit gateway

B.

Create a VPC endpoint service using the centralized application NLB and enable the option to require endpoint acceptance Create a VPC endpoint in each of the business unit VPCs using the service name of the endpoint service. Accept authorized endpoint requests from the endpoint serviceconsole.

C.

Create a VPC peering connection from each business unit VPC to the shared VPC Accept the VPC peering connections from the shared VPC console Configure VPC routing tables to send traffic to the VPC peering connection

D.

Configure a virtual private gateway for the shared VPC and create customer gateways for each of the authorized business unit VPCs Establish a Site-to-Site VPN connection from the business unit VPCs to the shared VPC Configure VPC routing tables to send traffic to the VPN connection

Full Access
Question # 26

A company is building a hybrid environment that includes servers in an on-premises data center and in the AWS Cloud. The company has deployed Amazon EC2 instances in three VPCs. Each VPC is in a different AWS Region. The company has established an AWS Direct Connect connection to the data center from the Region that is closest to the data center.

The company needs the servers in the on-premises data center to have access to the EC2 instances in all three VPCs. The servers in the on-premises data center also must have access to AWS public services.

Which combination of steps will meet these requirements with the LEAST cost? (Select TWO.)

A.

Create a Direct Connect gateway in the Region that is closest to the data center. Attach the Direct Connect connection to the Direct Connect gateway. Use the

B.

Direct Connect gateway to connect the VPCs in the other two Regions.

C.

Set up additional Direct Connect connections from the on-premises data center to the other two Regions.

D.

Create a private VIE.Establish an AWS Site-to-Site VPN connection over the private VIF to the VPCs in the other two Regions.

E.

Create a public VIF. Establish an AWS Site-to-Site VPN connection over the public VIF to the VPCs in the other two Regions.

F.

Use VPC peering to establish a connection between the VPCs across the Regions. Create a private VIF with the existing Direct Connect connection to connect to the peered VPCs.

Full Access
Question # 27

A company wants to migrate its website from an on-premises data center onto AWS. At the same time, it wants to migrate the website to a containerized microservice-based architecture to improve the availability and cost efficiency. The company's security policy states that privileges and network permissions must be configured according to best practice, using least privilege.

A Solutions Architect must create a containerized architecture that meets the security requirements and has deployed the application to an Amazon ECS cluster.

What steps are required after the deployment to meet the requirements? (Choose two.)

A.

Create tasks using the bridge network mode.

B.

Create tasks using the awsvpc network mode.

C.

Apply security groups to Amazon EC2 instances, and use IAM roles for EC2 instances to access other resources.

D.

Apply security groups to the tasks, and pass IAM credentials into the container at launch time to access other resources.

E.

Apply security groups to the tasks, and use IAM roles for tasks to access other resources.

Full Access
Question # 28

A company runs a processing engine in the AWS Cloud The engine processes environmental data from logistics centers to calculate a sustainability index The company has millions of devices in logistics centers that are spread across Europe The devices send information to the processing engine through a RESTful API

The API experiences unpredictable bursts of traffic The company must implement a solution to process all data that the devices send to the processing engine Data loss is unacceptable

Which solution will meet these requirements?

A.

Create an Application Load Balancer (ALB) for the RESTful API Create an Amazon Simple Queue Service (Amazon SQS) queue Create a listener and a target group for the ALB Add the SQS queue as the target Use a container that runs in Amazon Elastic Container Service (Amazon ECS) with the Fargate launch type to process messages in the queue

B.

Create an Amazon API Gateway HTTP API that implements the RESTful API Create an Amazon Simple Queue Service (Amazon SQS) queue Create an API Gateway service integration with the SQS queue Create an AWS Lambda function toprocess messages in the SQS queue

C.

Create an Amazon API Gateway REST API that implements the RESTful API Create a fleet of Amazon EC2 instances in an Auto Scaling group Create an API Gateway Auto Scaling group proxy integration Use the EC2 instances to process incoming data

D.

Create an Amazon CloudFront distribution for the RESTful API Create a data stream in Amazon Kinesis Data Streams Set the data stream as the origin for the distribution Create an AWS Lambda function to consume and process data in the data stream

Full Access
Question # 29

A company wants to migrate its website to AWS. The website uses microservices and runs on containers that are deployed in an on-premises, self-managed Kubernetes cluster. All the manifests that define the deployments for the containers in the Kubernetes deployment are in source control.

All data for the website is stored in a PostgreSQL database. An open source container image repository runs alongside the on-premises environment.

A solutions architect needs to determine the architecture that the company will use for the website on AWS.

Which solution will meet these requirements with the LEAST effort to migrate?

A.

Create an AWS App Runner service. Connect the App Runner service to the open source container image repository. Deploy the manifests from on premises to the App Runner service. Create an Amazon RDS for PostgreSQL database.

B.

Create an Amazon EKS cluster that has managed node groups. Copy the application containers to a new Amazon ECR repository. Deploy the manifests from on premises to the EKS cluster. Create an Amazon Aurora PostgreSQL DB cluster.

C.

Create an Amazon ECS cluster that has an Amazon EC2 capacity pool. Copy the application containers to a new Amazon ECR repository. Register each container image as a new task definition. Configure ECS services for each task definition to match the original Kubernetes deployments. Create an Amazon Aurora PostgreSQL DB cluster.

D.

Rebuild the on-premises Kubernetes cluster by hosting the cluster on Amazon EC2 instances. Migrate the open source container image repository to the EC2 instances. Deploy the manifests from on premises to the new cluster on AWS. Deploy an open source PostgreSQL database on the new cluster.

Full Access
Question # 30

A company is planning a migration from an on-premises data center to the AWS cloud. The company plans to use multiple AWS accounts that are managed in an organization in AWS organizations. The company will cost a small number of accounts initially and will add accounts as needed. A solution architect must design a solution that turns on AWS accounts.

What is the MOST operationally efficient solution that meets these requirements.

A.

Create an AWS Lambda function that creates a new cloudTrail trail in all AWS account in the organization. Invoke the Lambda function dally by using a scheduled action in Amazon EventBridge.

B.

Create a new CloudTrail trail in the organizations management account. Configure the trail to log all events for all AYYS accounts in the organization.

C.

Create a new CloudTrail trail in all AWS accounts in the organization. Create new trails whenever a new account is created.

D.

Create an AWS systems Manager Automaton runbook that creates a cloud trail in all AWS accounts in the organization. Invoke the automation by using Systems Manager State Manager.

Full Access
Question # 31

A flood monitoring agency has deployed more than 10.000 water-level monitoring sensors. Sensors send continuous data updates, and each update is less than 1 MB in size. The agency has a fleet of on-premises application servers. These servers receive upda.es 'on the sensors, convert the raw data into a human readable format, and write the results loan on-premises relational database server. Data analysts then use simple SOL queries to monitor the data.

The agency wants to increase overall application availability and reduce the effort that is required to perform maintenance tasks These maintenance tasks, which include updates and patches to the application servers, cause downtime. While an application server is down, data is lost from sensors because the remaining servers cannot handle the entire workload.

The agency wants a solution that optimizes operational overhead and costs. A solutions architect recommends the use of AWS loT Core to collect the sensor data.

What else should the solutions architect recommend to meet these requirements?

A.

Send the sensor data to Amazon Kinesis Data Firehose. Use an AWS Lambda function to read the Kinesis Data Firehose data, convert it to .csv format, and insert it into an Amazon Aurora MySQL DB instance. Instruct the data analysts to query the data directly from the DB instance.

B.

Send the sensor data to Amazon Kinesis Data Firehose. Use an AWS Lambda function to read the Kinesis Data Firehose data, convert it to Apache Parquet format and save it to an Amazon S3 bucket. Instruct the data analysts to query the data by using Amazon Athena.

C.

Send the sensor data to an Amazon Managed Service for Apache Flink {previously known as Amazon Kinesis Data Analytics) application to convert the data to .csv format and store it in an Amazon S3 bucket. Import the data into an Amazon Aurora MySQL DB instance. Instruct the data analysts to query the data directly from the DB instance.

D.

Send the sensor data to an Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) application to convert the data to Apache Parquet format and store it in an Amazon S3 bucket Instruct the data analysis to query the data by using Amazon Athena.

Full Access
Question # 32

A large education company recently introduced Amazon Workspaces to provide access to internal applications across multiple universities. The company is storing user profiles on an Amazon FSx (or Windows File Server file system. The tile system is configured with a DNS alias and is connected to a self-managed Active Directory. As more users begin to use the Workspaces, login time increases to unacceptable levels.

An investigation reveals a degradation in performance of the file system. The company created the file system on HDD storage with a throughput of 16 MBps. A solutions architect must improve the performance of the file system during a defined maintenance window.

What should the solutions architect do to meet these requirements with the LEAST administrative effort?

A.

Use AWS Backup to create a point-ln-lime backup of the file system. Restore the backup to a new FSx for Windows File Server file system. Select SSD as the storage type Select 32 MBps as the throughput capacity. When the backup and restore process Is completed, adjust the DNS alias accordingly. Delete the original file system.

B.

Disconnect users from the file system. In the Amazon FSx console, update the throughput capacity to 32 MBps. Update the storage type to SSD. Reconnect users to the file system.

C.

Deploy an AWS DataSync agent onto a new Amazon EC2 Instance. Create a task. Configure the existing file system as the source location. Configure a new FSx for Windows File Server file system with SSD storage and 32 MBps of throughput as the target location. Schedule the task. When the task is completed, adjust the DNS alias accordingly. Delete the original file system.

D.

Enable shadow copies on the existing file system by using a Windows PowerShell command. Schedule the shadow copy job to create a point-in-time backup of the file system. Choose to restore previous versions. Create a new FSx for Windows File Server file system with SSD storage and 32 MBps of throughput. When the copy job is completed, adjust the DNS alias. Delete the original file system.

Full Access
Question # 33

A company is using AWS Control Tower to manage AWS accounts in an organization in AWS Organizations. The company has an OU that contains accounts. The company

must prevent any new or existing Amazon EC2 instances in the OUs accounts from gaining a public IP address.

Which solution will meet these requirements?

A.

Configure all instances in each account in the OU to use AWS Systems Manager. Use a Systems Manager Automation runbook to prevent public IP addressesfrom being attached to the instances.

B.

Implement the AWS Control Tower proactive control to check whether instances in the OU's accounts have a public IP address. Set theAssociatePubIicIpAddress property to False. Attach the proactive control to the OU.

C.

Create an SCP that prevents the launch of instances that have a public IP address. Additionally, configure the SCP to prevent the attachment of apublic IP address to existing instances. Attach the SCP to the OU.

D.

Create an AWS Config custom rule that detects instances that have a public IP address. Configure a remediation action that uses an AWS Lambda function to detach the public IP addresses from the instances.

Full Access
Question # 34

A company uses an AWS CloudFormation template to deploy an Amazon ECS service into a production environment. The template includes an Amazon S3 bucket that is named by using a common prefix with the CloudFormation stack name.

The company uses the same template to create temporary environments for development and continuous integration. Developers can create environments successfully, but they receive errors from CloudFormation when they attempt to delete the environments. The developers often need to delete and recreate stacks with the same names as part of the development and testing process.

Which combination of steps should a solutions architect take to modify the solution to resolve this issue? (Select TWO.)

A.

Associate an AWS Lambda function with a CloudFormation custom resource to delete all keys that are present in a given S3 bucket. Implement this custom resource as part of the application's CloudFormation template.

B.

Modify the S3 bucket resource in the CloudFormation template by specifying Delete for the DeletionPolicy attribute. Specify the CAPABILITY_DELETE_NONEMPTY capability to process CloudFormation delete operations.

C.

Modify the S3 bucket resource in the CloudFormation template by specifying Retain for the DeletionPolicy attribute. Configure an AWS Config custom rule to run every 24 hours to identify, empty, and delete buckets that are no longer owned by a CloudFormation stack.

D.

Ensure that CloudFormation operations are being invoked by a role that has s3:DeleteObject permissions on all objects in the bucket.

E.

Modify the S3 bucket resource in the CloudFormation template to configure a bucket policy that grants s3:DeleteObject permissions on all objects in the bucket.

Full Access
Question # 35

A company is building a software-as-a-service (SaaS) solution on AWS. The company has deployed an Amazon API Gateway REST API with AWS Lambda integration in multiple AWS Regions and in the same production account.

The company offers tiered pricing that gives customers the ability to pay for the capacity to make a certain number of API calls per second. The premium tier offers up to 3,000 calls per second, and customers are identified by a unique API key. Several premium tier customers in various Regions report that they receive error responses of 429 Too Many Requests from multiple API methods during peak usage hours. Logs indicate that the Lambda function is never invoked.

What could be the cause of the error messages for these customers?

A.

The Lambda function reached its concurrency limit.

B.

The Lambda function its Region limit for concurrency.

C.

The company reached its API Gateway account limit for calls per second.

D.

The company reached its API Gateway default per-method limit for calls per second.

Full Access
Question # 36

A company is planning to migrate an on-premises data center to AWS. The company currently hosts the data center on Linux-based VMware VMs. A solutions architect must collect information about network dependencies between the VMs. The information must be in the form of a diagram that details host IP addresses, hostnames, and network connection information.

Which solution will meet these requirements?

A.

Use AWS Application Discovery Service. Select an AWS Migration Hub home AWS Region. Install the AWS Application Discovery Agent on the on-premises servers for data collection. Grant permissions to Application Discovery Service to use the Migration Hub network diagrams.

B.

Use the AWS Application Discovery Service Agentless Collector for server data collection. Export the network diagrams from the AWS Migration Hub in .png format.

C.

Install the AWS Application Migration Service agent on the on-premises servers for data collection. Use AWS Migration Hub data in Workload Discovery on AWS to generate network diagrams.

D.

Install the AWS Application Migration Service agent on the on-premises servers for data collection. Export data from AWS Migration Hub in .csv format into an Amazon CloudWatch dashboard to generate network diagrams.

Full Access
Question # 37

A company wants to modernize a monolithic application in the company's data center and deploy the application on AWS. The monolithic application consists of an event broker in a central account and multiple microservices in individual AWS accounts. The event broker and the microservices are deployed on Amazon ECS clusters that use the Fargate launch type.

Multiple microservices need access to the same events from the event broker. The company wants to distribute events from the central event broker to each microservice across accounts.

Which solution will meet these requirements?

A.

Create an Amazon SNS topic in the central account. Add a topic policy to allow other accounts to subscribe to the topic. Create an Amazon SQS queue in each individual AWS account. Subscribe the SQS queue to the SNS topic. Configure the microservices to read events from their own SQS queue.

B.

Create a new Amazon EventBridge event bus in the central account with the required permissions. Add EventBridge rules filtered by service for each microservice. Invoke the rules to route events to other accounts.

C.

Create a data stream in Amazon Kinesis Data Streams in the central account. Create an IAM policy to grant the necessary permissions to access the data stream. Set each of the microservices as an event source on the Kinesis stream. Configure the stream to invoke each microservice.

D.

Create a new Amazon SQS queue as the event broker in the central account. Grant the required permissions. Configure each of the microservices to read messages from the central SQS queue.

Full Access
Question # 38

A startup company hosts a fleet of Amazon EC2 instances in private subnets using the latest Amazon Linux 2 AMI. The company's engineers rely heavily on SSH access to the instances for troubleshooting.

The company's existing architecture includes the following:

• A VPC with private and public subnets, and a NAT gateway

• Site-to-Site VPN for connectivity with the on-premises environment

• EC2 security groups with direct SSH access from the on-premises environment

The company needs to increase security controls around SSH access and provide auditing of commands executed by the engineers.

Which strategy should a solutions architect use?

A.

Install and configure EC2 Instance Connect on the fleet of EC2 instances. Remove all security group rules attached to EC2 instances that allow inbound TCP on port 22. Advise the engineers to remotely access the instances by using the EC2 Instance Connect CLI.

B.

Update the EC2 security groups to only allow inbound TCP on port 22 to the IP addresses of the engineer's devices. Install the Amazon CloudWatch agent on all EC2 instances and send operating system audit logs to CloudWatch Logs.

C.

Update the EC2 security groups to only allow inbound TCP on port 22 to the IP addresses of the engineer's devices. Enable AWS Config for EC2 security group resource changes. Enable AWS Firewall Manager and apply a security group policy that automatically remediates changes to rules.

D.

Create an IAM role with the AmazonSSMManagedInstanceCore managed policy attached. Attach the IAM role to all the EC2 instances. Remove all security group rules attached to the EC2 instances that allow inbound TCP on port 22. Have the engineers install the AWS Systems Manager Session Manager plugin for their devices and remotely access the instances by using the start-session API call from Systems Manager.

Full Access
Question # 39

A company that has multiple AWS accounts is using AWS Organizations. The company’s AWS accounts host VPCs, Amazon EC2 instances, and containers.

The company’s compliance team has deployed a security tool in each VPC where the company has deployments. The security tools run on EC2 instances and send information to the AWS account that is dedicated for the compliance team. The company has tagged all the compliance-related resources with a key of “costCenter” and a value or “compliance”.

The company wants to identify the cost of the security tools that are running on the EC2 instances so that the company can charge the compliance team’s AWS account. The cost calculation must be as accurate as possible.

What should a solutions architect do to meet these requirements?

A.

In the management account of the organization, activate the costCenter user-defined tag. Configure monthly AWS Cost and Usage Reports to save to an Amazon S3 bucket in the management account. Use the tag breakdown in the report to obtain the total cost for the costCenter tagged resources.

B.

In the member accounts of the organization, activate the costCenter user-defined tag. Configure monthly AWS Cost and Usage Reports to save to an Amazon S3 bucket in the management account. Schedule a monthly AWS Lambda function to retrieve the reports and calculate the total cost for the costCenter tagged resources.

C.

In the member accounts of the organization activate the costCenter user-defined tag. From the management account, schedule a monthly AWS Cost and Usage Report. Use the tag breakdown in the report to calculate the total cost for the costCenter tagged resources.

D.

Create a custom report in the organization view in AWS Trusted Advisor. Configure the report to generate a monthly billing summary for the costCenter tagged resources in the compliance team’s AWS account.

Full Access
Question # 40

A company is using AWS to develop and manage its production web application. The application includes an Amazon API Gateway HTTP API that invokes an AWS Lambda function. The Lambda function processes and then stores data in a database.

The company wants to implement user authorization for the web application in an integrated way. The company already uses a third-party identity provider that issues OAuth tokens for the company's other applications.

Which solution will meet these requirements?

A.

Integrate the company's third-party identity provider with API Gateway. Configure an API Gateway Lambda authorizer to validate tokens from the identity provider. Require the Lambda authorizer on all API routes. Update the web application to get tokens from the identity provider and include the tokens in the Authorization header when calling the API Gateway HTTP API.

B.

Integrate the company's third-party identity provider with AWS Directory Service. Configure Directory Service as an API Gateway authorizer to validate tokens from the identity provider. Require the Directory Service authorizer on all API routes. Configure AWS IAM Identity Center as a SAML 2.0 identity provider. Configure the web application as a custom SAML 2.0 application.

C.

Integrate the company's third-party identity provider with AWS IAM Identity Center. Configure API Gateway to use IAM Identity Center for zero-configuration authentication and authorization. Update the web application to retrieve AWS STS tokens from IAM Identity Center and include the tokens in the Authorization header when calling the API Gateway HTTP API.

D.

Integrate the company's third-party identity provider with AWS IAM Identity Center. Configure IAM users with permissions to call the API Gateway HTTP API. Update the web application to extract request parameters from the IAM users and include the parameters in the Authorization header when calling the API Gateway HTTP API.

Full Access
Question # 41

A company has an online learning platform that teaches data science. The platform uses the AWS Cloud to provision on-demand lab environments for its students. Each student receives a dedicated AWS account for a short time. Students need access to ml.p2.xlarge instances to run a single Amazon SageMaker machine learning training job and to deploy the inference endpoint. Account provisioning is automated. The accounts are members of an organization in AWS Organizations with all features enabled. The accounts must be provisioned in the ap-southeast-2 Region. The default resource usage quotas are not sufficient for the accounts. A solutions architect must enhance the account provisioning process to include automated quota increases. Which solution will meet these requirements?

A.

Create a quota request template in the us-east-1 Region in the organization's management account. Enable template association. Add a quota for SageMaker in ap-southeast-2 for ml.p2.xlarge training job usage. Set the desired quota to 1. Add a quota for SageMaker in ap-southeast-2 for ml.p2.xlarge endpoint usage. Set the desired quota to 1.

B.

Create a quota request template in the us-east-1 Region in the organization's management account. Enable template association. Add a quota for SageMaker in ap-southeast-2 for ml.p2.xlarge training warm pool usage. Set the desired quota to 2.

C.

Create a quota request template in ap-southeast-2 in the organization's management account. Enable template association. Add a quota for SageMaker in the us-east-1 Region for ml.p2.xlarge training job usage. Set the desired quota to 1. Add a quota for SageMaker in us-east-1 for ml.p2.xlarge endpoint usage. Set the desired quota to 1.

D.

Create a quota request template in ap-southeast-2 in the organization's management account. Enable template association. Add a quota for SageMaker in the us-east-1 Region for ml.p2.xlarge training warm pool usage. Set the desired quota to 2.

Full Access
Question # 42

A company operates a fleet of servers on premises and operates a fleet of Amazon EC2 instances in its organization in AWS Organizations. The company's AWS accounts contain hundreds of VPCs. The company wants to connect its AWS accounts to its on-premises network. AWS Site-to-Site VPN connections are already established to a single AWS account. The company wants to control which VPCs can communicate with other VPCs.

Which combination of steps will achieve this level of control with the LEAST operational effort? (Choose three.)

A.

Create a transit gateway in an AWS account. Share the transit gateway across accounts by using AWS Resource Access Manager (AWS RAM).

B.

Configure attachments to all VPCs and VPNs.

C.

Set up transit gateway route tables. Associate the VPCs and VPNs with the route tables.

D.

Configure VPC peering between the VPCs.

E.

Configure attachments between the VPCs and VPNs.

F.

Set up route tables on the VPCs and VPNs.

Full Access
Question # 43

A company's interactive web application uses an Amazon CloudFront distribution to serve images from an Amazon S3 bucket. Occasionally, third-party tools ingest corrupted images into the S3 bucket. This image corruption causes a poor user experience in the application later. The company has successfully implemented and tested Python logic to detect corrupt images.

A solutions architect must recommend a solution to integrate the detection logic with minimal latency between the ingestion and serving.

Which solution will meet these requirements?

A.

Use a Lambda@Edge function that is invoked by a viewer-response event.

B.

Use a Lambda@Edge function that is invoked by an origin-response event.

C.

Use an S3 event notification that invokes an AWS Lambda function.

D.

Use an S3 event notification that invokes an AWS Step Functions state machine.

Full Access
Question # 44

A video streaming company recently launched a mobile app for video sharing. The app uploads various files to an Amazon S3 bucket in the us-east-1 Region. The files range in size from 1 GB to 10 GB.

Users who access the app from Australia have experienced uploads that take long periods of time Sometimes the files fail to completely upload for these users . A solutions architect must improve the app' performance for these uploads

Which solutions will meet these requirements? (Select TWO.)

A.

Enable S3 Transfer Acceleration on the S3 bucket Configure the app to use the Transfer Acceleration endpoint for uploads

B.

Configure an S3 bucket in each Region to receive the uploads. Use S3 Cross-Region Replication to copy the files to the distribution S3 bucket.

C.

Set up Amazon Route 53 with latency-based routing to route the uploads to the nearest S3 bucket Region.

D.

Configure the app to break the video files into chunks Use a multipart upload to transfer files to Amazon S3.

E.

Modify the app to add random prefixes to the files before uploading

Full Access
Question # 45

A financial services company sells its software-as-a-service (SaaS) platform for application compliance to large global banks. The SaaS platform runs on AWS and uses multiple AWS accounts that are managed in an organization in AWS Organizations. The SaaS platform uses many AWS resources globally.

For regulatory compliance, all API calls to AWS resources must be audited, tracked for changes, and stored in a durable and secure data store.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Create a new AWS CloudTrail trail. Use an existing Amazon S3 bucket in the organization's management account to store the logs. Deploy the trail to all AWS Regions. Enable MFA delete and encryption on the S3 bucket.

B.

Create a new AWS CloudTrail trail in each member account of the organization. Create new Amazon S3 buckets to store the logs. Deploy the trail to all AWS Regions. Enable MFA delete and encryption on the S3 buckets.

C.

Create a new AWS CloudTrail trail in the organization's management account. Create a new Amazon S3 bucket with versioning turned on to store the logs. Deploy the trail for all accounts in the organization. Enable MFA delete and encryption on the S3 bucket.

D.

Create a new AWS CloudTrail trail in the organization's management account. Create a new Amazon S3 bucket to store the logs. Configure Amazon Simple Notification Service (Amazon SNS) to send log-file delivery notifications to an external management system that will track the logs. Enable MFA delete and encryption on the S3 bucket.

Full Access
Question # 46

Question:

A company hosts an ecommerce site using EC2, ALB, and DynamoDB in one AWS Region. The site uses a custom domain in Route 53. The company wants toreplicate the stack to a second Regionfordisaster recoveryandfaster accessfor global customers.

What should the architect do?

A.

Use CloudFormation to deploy to the second Region. Use Route 53 latency-based routing. Enable global tables in DynamoDB.

B.

Use the console to recreate the infra manually in the second Region. Use weighted routing.

C.

Replicate only the S3 and DynamoDB data. Use Route 53 failover routing.

D.

Use Beanstalk and DynamoDB Streams for replication. Use latency-based routing.

Full Access
Question # 47

A health insurance company stores personally identifiable information (PII) in an Amazon S3 bucket. The company uses server-side encryption with S3 managed encryption keys (SSE-S3) to encrypt the objects. According to a new requirement, all current and future objects in the S3 bucket must be encrypted by keys that the company’s security team manages. The S3 bucket does not have versioning enabled.

Which solution will meet these requirements?

A.

In the S3 bucket properties, change the default encryption to SSE-S3 with a customer managed key. Use the AWS CLI to re-upload all objects in the S3 bucket. Set an S3 bucket policy to deny unencrypted PutObject requests.

B.

In the S3 bucket properties, change the default encryption to server-side encryption with AWS KMS managed encryption keys (SSE-KMS). Set an S3 bucket policy to deny unencrypted PutObject requests. Use the AWS CLI to re-upload all objects in the S3 bucket.

C.

In the S3 bucket properties, change the default encryption to server-side encryption with AWS KMS managed encryption keys (SSE-KMS). Set an S3 bucket policy to automatically encrypt objects on GetObject and PutObject requests.

D.

In the S3 bucket properties, change the default encryption to AES-256 with a customer managed key. Attach a policy to deny unencrypted PutObject requests to any entities that access the S3 bucket. Use the AWS CLI to re-upload all objects in the S3 bucket.

Full Access
Question # 48

A company needs to create and manage multiple AWS accounts for a number of departments from a central location. The security team requires read-only access to all accounts from its own AWS account. The company is using AWS Organizations and created an account for the security team.

How should a solutions architect meet these requirements?

A.

Use the OrganizationAccountAccessRole IAM role to create a new IAM policy with read-only access in each member account. Establish a trust relationship between the IAM policy in each member account and the security account. Ask the security team to use the IAM policy to gain access.

B.

Use the Organization AccountAccessRole IAM role to create a new IAM role with read-only access in each member account. Establish a trust relationship between the IAM role in each member account and the security account. Ask the security team to use the IAM role to gain access.

C.

Ask the security team to use AWS Security Token Service (AWS STS) lo call the AssumeRole API tor the Organization AccountAccessRole IAM role in the management account from the security account. Use the generated temporary credentials to gain access.

D.

Ask the security team to use AWS Security Token Service (AWS STS) to call the AssumeRole API for the Organization AccountAccessRole IAM role in the member account from the security account. Use the generated temporary credentials to gain access.

Full Access
Question # 49

A company hosts an intranet web application on Amazon EC2 instances behind an Application Load Balancer (ALB). Currently, users authenticate to the application against an internal user database.

The company needs to authenticate users to the application by using an existing AWS Directory Service for Microsoft Active Directory directory. All users with accounts in the directory must have access to the application.

Which solution will meet these requirements?

A.

Create a new app client in the directory. Create a listener rule for the ALB. Specify the authenticate-oidc action for the listener rule. Configure the listener rule with the appropriate issuer, client ID and secret, and endpoint details for the Active Directory service. Configure the new app client with the callback URL that the ALB provides.

B.

Configure an Amazon Cognito user pool. Configure the user pool with a federated identity provider (IdP) that has metadata from the directory. Create an app client. Associate the app client with the user pool. Create a listener rule for the ALB. Specify the authenticate-cognito action for the listener rule. Configure the listener rule to use the user pool and app client.

C.

Add the directory as a new 1AM identity provider (IdP). Create a new 1AM role that has an entity type of SAML 2.0 federation. Configure a role policy that allows access to the ALB. Configure the new role as the default authenticated user role for the IdP. Create a listener rule for the ALB. Specify the authenticate-oidc action for the listener rule.

D.

Enable AWS 1AM Identity Center (AWS Single Sign-On). Configure the directory as an external identity provider (IdP) that uses SAML. Use the automatic provisioning method. Create a new 1AM role that has an entity type of SAML 2.0 federation. Configure a role policy that allows access to the ALB. Attach the new role to all groups. Create a listener rule for the ALB. Specify the authenticate-cognito action for the listener rule.

Full Access
Question # 50

A company has many AWS accounts and uses AWS Organizations to manage all of them. A solutions architect must implement a solution that the company can use to share a common network across multiple accounts.

The company's infrastructure team has a dedicated infrastructure account that has a VPC. The infrastructure team must use this account to manage the network. Individual accounts cannot have the ability to manage their own networks. However, individual accounts must be able to create AWS resources within subnets.

Which combination of actions should the solutions architect perform to meet these requirements? (Select TWO.)

A.

Create a transit gateway in the infrastructure account.

B.

Enable resource sharing from the AWS Organizations management account.

C.

Create VPCs in each AWS account within the organization in AWS Organizations. Configure the VPCs to share the same CIDR range and subnets as the VPC in the infrastructure account. Peer the VPCs in each individual account with the VPC in the infrastructure account,

D.

Create a resource share in AWS Resource Access Manager in the infrastructure account. Select the specific AWS Organizations OU that will use the shared network. Select each subnet to associate with the resource share.

E.

Create a resource share in AWS Resource Access Manager in the infrastructure account. Select the specific AWS Organizations OU that will use the shared network. Select each prefix list to associate with the resource share.

Full Access
Question # 51

A company developed a pilot application by using AWS Elastic Beanstalk and Java. To save costs during development, the company's development team deployed the application into a single-instance environment. Recent tests indicate that the application consumes more CPU than expected. CPU utilization is regularly greater than 85%, which causes some performance bottlenecks.

A solutions architect must mitigate the performance issues before the company launches the application to production.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Create a new Elastic Beanstalk application. Select a load-balanced environment type. Select all Availability Zones. Add a scale-out rule that will run if the maximum CPU utilization is over 85% for 5 minutes.

B.

Create a second Elastic Beanstalk environment. Apply the traffic-splitting deployment policy. Specify a percentage of incoming traffic to direct to the new environment in the average CPU utilization is over 85% for 5 minutes.

C.

Modify the existing environment's capacity configuration to use a load-balanced environment type. Select all Availability Zones. Add a scale-out rule that will run if the average CPU utilization is over 85% for 5 minutes.

D.

Select the Rebuild environment action with the load balancing option Select an Availability Zones Add a scale-out rule that will run if the sum CPU utilization is over 85% for 5 minutes.

Full Access
Question # 52

A company runs a website on Amazon ECS containers that use the AWS Fargate launch type. The company configures AWS Application Auto Scaling by using a target tracking scaling policy. The company sets the request count as the scaling metric. An Application Load Balancer (ALB) serves traffic to the ECS containers. The website serves images on request and resizes the images to a predefined size to match the viewers' screens. After the website resizes an image, the website caches the image locally in a container and serves subsequent requests from the cache.

During periods of high traffic, the company observed that images load slowly and with high latency. The company wants to minimize the latency to serve images.

Which solution will meet this requirement with the LEAST operational overhead?

A.

Create a new Amazon CloudFront distribution and an Amazon S3 bucket. Set the ALB as one origin for the distribution and the S3 bucket as a second origin. Configure a cache behavior that routes image requests to the S3 origin, and configure a default cache behavior for the ALB origin. Pre-scale all images and upload the images to the S3 bucket.

B.

Create an Amazon ElastiCache (Memcached) cluster. Update the application to read and write the resized images to the ElastiCache (Memcached) cluster by using the image name and size as the key.

C.

Create an Amazon Aurora cluster and an Amazon S3 bucket. Update the application to store resized images in the S3 bucket and to store a cache key in the Aurora cluster. Configure the application to load the cache key from the Aurora cluster and to serve images from the S3 bucket.

D.

Create an Amazon API Gateway HTTP API and enable API request caching. Replace the ALB with the HTTP API and remove the local caching in the application code.

Full Access
Question # 53

A company uses AWS Organizations AWS account. A solutions architect must design a solution in which only administrator roles are allowed to use IAM actions. However the solutions archited does not have access to all the AWS account throughout the company.

Which solution meets these requirements with the LEAST operational overhead?

A.

Create an SCP that applies to at the AWS accounts to allow I AM actions only for administrator roles. Apply the SCP to the root OLI.

B.

Configure AWS CloudTrai to invoke an AWS Lambda function for each event that is related to 1AM actions. Configure the function to deny the action. If the user who invoked the action is not an administator.

C.

Create an SCP that applies to all the AWS accounts to deny 1AM actions for all users except for those with administrator roles. Apply the SCP to the root OU.

D.

Set an 1AM permissions boundary that allows 1AM actions. Attach the permissions boundary to every administrator role across all the AWS accounts.

Full Access
Question # 54

A solutions architect needs to migrate an on-premises legacy application to AWS. The application runs on two servers behind a bad balancer. The application requires a license file that is associated with the MAC address of the server's network adapter. It takes the software vendor 12 hours to send new license files. The application also uses configuration files with a static IP address to access a database host names are not supported.

Given these requirements. which combination of steps should be taken to implement highly available architecture for the application servers in AWS? (Select TWO.)

A.

Create a pool of ENIs. Request license files from the vendor for the pool, and store the license files in Amazon $3. Create a bootstrap automation script to download a license file and attach the corresponding ENI to anAmazon EC2 instance.

B.

Create a pool of ENIs. Request license files from the vendor for the pool, store the license files on an Amazon EC2 instance. Create an AMI from the instance and use this AMI for all future EC2

C.

Create a bootstrap automation script to request a new license file from the vendor. When the response is received, apply the license file to an Amazon EC2 instance.

D.

Edit the bootstrap automation script to read the database server IP address from the AWS Systems Manager Parameter Store. and inject the value into the local configuration files.

E.

Edit an Amazon EC2 instance to include the database server IP address in the configuration files and re-create the AMI to use for all future EC2 instances.

Full Access
Question # 55

A company use an organization in AWS Organizations to manage multiple AWS accounts. The company hosts some applications in a VPC in the company's snared services account. The company has attached a transit gateway to the VPC in the Shared services account.

The company is developing a new capability and has created a development environment that requires access to the applications that are in the snared services account. The company intends to delete and recreate resources frequently in the development account. The company also wants to give a development team the ability to recreate the team's connection to the shared services account as required.

Which solution will meet these requirements?

A.

Create a transit gateway in the development account. Create a transit gateway peering request to the shared services account. Configure the snared services transit gateway to automatically accept peering connections.

B.

Turn on automate acceptance for the transit gateway in the shared services account. Use AWS Resource Access Manager (AWS RAM) to share the transit gateway resource in the shared services account with the development account. Accept the resource in tie development account. Create a transit gateway attachment in the development account.

C.

Turn on automate acceptance for the transit gateway in the shared services account. Create a VPC endpoint. Use the endpoint policy to grant permissions on the VPC endpoint for the development account. Configure the endpoint service to automatically accept connection requests. Provide the endpoint details to the development team.

D.

Create an Amazon EventBridge rule to invoke an AWS Lambda function that accepts the transit gateway attachment value the development account makes an attachment request. Use AWS Network Manager to store. The transit gateway in the shared services account with the development account. Accept the transit gateway in the development account.

Full Access
Question # 56

A company is running its solution on AWS in a manually created VPC. The company is using AWS CloudFormation to provision other parts of the infrastructure According to a new requirement the company must manage all infrastructure in an automatic way

What should the comp any do to meet this new requirement with the LEAST effort?

A.

Create a new AWS Cloud Development Kit (AWS CDK) stack that strictly provisions the existing VPC resources and configuration Use AWS CDK to import the VPC into the stack and to manage the VPC

B.

Create a CloudFormation stack set that creates the VPC Use the stack set to import the VPC into the stack

C.

Create a new CloudFormation template that strictly provisions the existing VPC resources and configuration From the CloudFormation console, create a new stack by importing the existing resources

D.

Create a new CloudFormation template that creates the VPC Use the AWS Serverless Application Model (AWS SAM) CLI to import the VPC

Full Access
Question # 57

A company has dozens of AWS accounts for different teams, applications, and environments. The company has defined a custom set of controls that all accounts must have. The company is concerned that potential misconfigurations in the accounts could lead to security issues or noncompliance. A solutions architect must design a solution that deploys the custom controls by using infrastructure as code (IaC) in a repeatable way. Which solution will meet these requirements with the LEAST operational overhead?

A.

Configure AWS Config rules in each account to evaluate the account settings against the custom controls. Define AWS Lambda functions in AWS CloudFormation templates. Program the Lambda functions to remediate noncompliant AWS Config rules. Deploy the CloudFormation templates as stack sets during account creation. Configure the stack sets to invoke the Lambda functions.

B.

Configure AWS Systems Manager associations to remediate configuration issues across accounts. Define the desired configuration state in an AWS CloudFormation template by using AWS::SSM::Association. Deploy the CloudFormation templates as stack sets to all accounts during account creation.

C.

Enable AWS Control Tower to set up and govern the multi-account environment. Use blueprints that enforce security best practices. Use Customizations for AWS Control Tower and CloudFormation templates to define the custom controls for each account. Use Amazon EventBridge to deploy Customizations for AWS Control Tower during account-provisioning lifecycle events.

D.

Enable AWS Security Hub in all the accounts to aggregate findings in a central administrator account. Develop AWS CloudFormation templates to create Amazon EventBridge rules, AWS Lambda functions, and CloudFormation stacks in each account to remediate Security Hub findings. Deploy the CloudFormation stacks during account provisioning to set up the automated remediation.

Full Access
Question # 58

A public retail web application uses an Application Load Balancer (ALB) in front of Amazon EC2 instances running across multiple Availability Zones (AZs) in a Region backed by an Amazon RDS MySQL Multi-AZ deployment. Target group health checks are configured to use HTTP and pointed at the product catalog page. Auto Scaling is configured to maintain the web fleet size based on the ALB health check.

Recently, the application experienced an outage. Auto Scaling continuously replaced the instances during the outage. A subsequent investigation determined that the web server metrics were within the normal range, but the database tier was experiencing high toad, resulting in severely elevated query response times.

Which of the following changes together would remediate these issues while improving monitoring capabilities for the availability and functionality of the entire application stack for future growth? (Select TWO.)

A.

Configure read replicas for Amazon RDS MySQL and use the single reader endpoint in the web application to reduce the load on the backend database tier.

B.

Configure the target group health check to point at a simple HTML page instead of a product catalog page and the Amazon Route 53 health check against the product page to evaluate full application functionality. Configure Ama7on CloudWatch alarms to notify administrators when the site fails.

C.

Configure the target group health check to use a TCP check of the Amazon EC2 web server and the Amazon Route S3 health check against the product page to evaluate full application functionality. Configure Amazon CloudWatch alarms to notify administrators when the site fails.

D.

Configure an Amazon CtoudWatch alarm for Amazon RDS with an action to recover a high-load, impaired RDS instance in the database tier.

E.

Configure an Amazon Elastic ache cluster and place it between the web application and RDS MySQL instances to reduce the load on the backend database tier.

Full Access
Question # 59

A solutions architect needs to copy data from an Amazon S3 bucket m an AWS account to a new S3 bucket in a new AWS account. The solutions architect must implement a solution that uses the AWS CLI.

Which combination of steps will successfully copy the data? (Choose three.)

A.

Create a bucket policy to allow the source bucket to list its contents and to put objects and set object ACLs in the destination bucket. Attach the bucket policy to the destination bucket.

B.

Create a bucket policy to allow a user In the destination account to list the source bucket's contents and read the source bucket's objects. Attach the bucket policy to the source bucket.

C.

Create an IAM policy in the source account. Configure the policy to allow a user In the source account to list contents and get objects In the source bucket, and to list contents, put objects, and set object ACLs in the destination bucket. Attach the policy to the user _

D.

Create an IAM policy in the destination account. Configure the policy to allow a user In the destination account to list contents and get objects In the source bucket, and to list contents, put objects, and set objectACLs in the destination bucket. Attach the policy to the user.

E.

Run the aws s3 sync command as a user in the source account. Specify' the source and destination buckets to copy the data.

F.

Run the aws s3 sync command as a user in the destination account. Specify' the source and destination buckets to copy the data.

Full Access
Question # 60

A company is developing a new serverless API by using Amazon API Gateway and AWS Lambda. The company integrated the Lambda functions with API Gateway to use several shared libraries and custom classes.

A solutions architect needs to simplify the deployment of the solution and optimize for code reuse.

Which solution will meet these requirements?

A.

Deploy the shared libraries and custom classes into a Docker image. Store the image in an S3 bucket. Create a Lambda layer that uses the Docker image as the source. Deploy the API's Lambda functions as Zip packages. Configure the packages to use the Lambda layer.

B.

Deploy the shared libraries and custom classes to a Docker image. Upload the image to Amazon Elastic Container Registry (Amazon ECR). Create a Lambda layer that uses the Docker image as the source. Deploy the API's Lambda functions as Zip packages. Configure the packages to use the Lambda layer.

C.

Deploy the shared libraries and custom classes to a Docker container in Amazon Elastic Container Service (Amazon ECS) by using the AWS Fargate launch type. Deploy the API's Lambda functions as Zip packages. Configure the packages to use the deployed container as a Lambda layer.

D.

Deploy the shared libraries, custom classes, and code for the API's Lambda functions to a Docker image. Upload the image to Amazon Elastic Container Registry (Amazon ECR). Configure the API's Lambda functions to use the Docker image as the deployment package.

Full Access
Question # 61

A company is designing its network configuration in the AWS Cloud. The company uses AWS Organizations to manage a multi-account setup. The company has three OUs. Each OU contains more than 100 AWS accounts. Each account has a single VPC, and all the VPCs in each OU are in the same AWS Region.

The CIDR ranges for all the AWS accounts do not overlap. The company needs to implement a solution in which VPCs in the same OU can communicate with each other but cannot communicatewith VPCs in other OUs.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Create an AWS CloudFormation stack set that establishes VPC peering between accounts in each OU. Provision the stack set in each OU.

B.

In each OU, create a dedicated networking account that has a single VPC. Share this VPC with all the other accounts in the OU by using AWS Resource Access Manager (AWS RAM). Create a VPC peering connection between the networking account and each account in the OU.

C.

Provision a transit gateway in an account in each OU. Share the transit gateway across the organization by using AWS Resource Access Manager (AWS RAM). Create transit gateway VPC attachments for each VPC.

D.

In each OU, create a dedicated networking account that has a single VPC. Establish a VPN connection between the networking account and the other accounts in the OU. Use third-party routing software to route transitive traffic between the VPCs.

Full Access
Question # 62

A company is deploying a new application on AWS. The application consists of an Amazon EKS cluster and an Amazon ECR repository. The EKS cluster has an AWS managed node group.

The company's security guidelines state that all resources on AWS must be continuously scanned for security vulnerabilities.

Which solution will meet this requirement with the LEAST operational overhead?

A.

Activate AWS Security Hub. Configure Security Hub to scan the EKS nodes and the ECR repository.

B.

Activate Amazon Inspector to scan the EKS nodes and the ECR repository.

C.

Launch a new Amazon EC2 instance and install a vulnerability scanning tool from AWS Marketplace. Configure the EC2 instance to scan the EKS nodes. Configure Amazon ECR to perform a basic scan on push.

D.

Install the Amazon CloudWatch agent on the EKS nodes. Configure the CloudWatch agent to scan continuously. Configure Amazon ECR to perform a basic scan on push.

Full Access
Question # 63

A company wants to establish a dedicated connection between its on-premises infrastructure and AWS. The company is setting up a 1 Gbps AWS Direct Connect connection to its account VPC. The architecture includes a transit gateway and a Direct Connect gateway to connect multiple VPCs and the on-premises infrastructure.

The company must connect to VPC resources over a transit VIF by using the Direct Connect connection.

Which combination of steps will meet these requirements? (Select TWO.)

A.

Update the 1 Gbps Direct Connect connection to 10 Gbps.

B.

Advertise the on-premises network prefixes over the transit VIF.

C.

Adverse the VPC prefixes from the Direct Connect gateway to the on-premises network over the transit VIF.

D.

Update the Direct Connect connection's MACsec encryption mode attribute to must encrypt.

E.

Associate a MACsec Connection Key Name-Connectivity Association Key (CKN/CAK) pair with the Direct Connect connection.

Full Access
Question # 64

A company is migrating its legacy .NET workload to AWS. The company has a containerized setup that includes a base container image. The base image is tens of

gigabytes in size because of legacy libraries and other dependencies. The company has images for custom developed components that are dependent on the base image.

The company will use Amazon Elastic Container Registry (Amazon ECR) as part of its solution on AWS.

Which solution will provide the LOWEST container startup time on AWS?

A.

Use Amazon ECR to store the base image and the images for the custom developed components. Use Amazon Elastic Container Service (Amazon ECS) onAWS Fargate to run the workload.

B.

Use Amazon ECR to store the base image and the images for the custom developed components. Use AWS App Runner to run the workload.

C.

Use Amazon ECR to store the images for the custom developed components. Create an AMI that contains the base image. Use Amazon Elastic Container Service (Amazon ECS) on Amazon EC2 instances that are based on the AMI to run the workload

D.

Use Amazon ECR to store the images for the custom developed components. Create an AMI that contains the base image. Use Amazon Elastic Kubernetes Service (Amazon EKS) on AWS Fargate with the AMI to run the workload.

Full Access
Question # 65

A company has on-premises Linux, Windows, and Ubuntu servers that run many applications. The servers run on physical machines and VMs. The company plans to migrate the servers to Amazon EC2 instances.

The company needs to accomplish the following goals:

• Measure actual server usage, system performance, and running processes.

• List system configurations.

• Understand details of the network connections between systems.

• Analyze application components and dependencies within on-premises workloads.

• Receive EC2 instance sizing recommendations from AWS.

Which solution will meet these requirements?

A.

Install AWS Systems Manager Agent (SSM Agent) on the physical machines and VMs to gather performance and usage information from servers. Use Systems Manager Application Manager to discover existing servers and to group servers into applications before the migration. Generate EC2 instance recommendations by using AWS Pricing Calculator.

B.

Install the Amazon Inspector agent on the physical machines and VMs to gather performance and usage information from servers. Use AWS Migration Hub to discover existing servers and to group servers into applications before the migration. Generate EC2 instance recommendations by using AWS Compute Optimizer.

C.

Install the AWS Application Discovery Agent on the physical machines and VMs to gather performance and usage information from servers. Use AWS Migration Hub to discover existing servers and to group servers into applications before the migration. Generate EC2 instance recommendations by using Migration Hub.

D.

Install the unified Amazon CloudWatch agent on the physical machines and VMs to gather performance and usage information from servers. Use AWS Migration Hub to discover existing servers and to group servers into applications before the migration. Generate EC2 instance recommendations by using AWS Compute Optimizer.

Full Access
Question # 66

A company is hosting a monolithic REST-based API for a mobile app on five Amazon EC2 instances in public subnets of a VPC. Mobile clients connect to the API by using a domain name that is hosted on Amazon Route 53. The company has created a Route 53 multivalue answer routing policy with the IP addresses of all the EC2 instances. Recently, the app has been overwhelmed by large and sudden increases to traffic. The app has not been able to keep up with the traffic.

A solutions architect needs to implement a solution so that the app can handle the new and varying load.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Separate the API into individual AWS Lambda functions. Configure an Amazon API Gateway REST API with Lambda integration for the backend. Update the Route 53 record to point to the API Gateway API.

B.

Containerize the API logic. Create an Amazon Elastic Kubernetes Service (Amazon EKS) cluster. Run the containers in the cluster by using Amazon EC2. Create a Kubernetes ingress. Update the Route 53 record to point to the Kubernetes ingress.

C.

Create an Auto Scaling group. Place all the EC2 instances in the Auto Scaling group. Configure the Auto Scaling group to perform scaling actions that are based on CPU utilization. Create an AWS Lambda function that reacts to Auto Scaling group changes and updates the Route 53 record.

D.

Create an Application Load Balancer (ALB) in front of the API. Move the EC2 instances to private subnets in the VPC. Add the EC2 instances as targets for the ALB. Update the Route 53 record to point to the ALB.

Full Access
Question # 67

A solutions architect needs to implement a client-side encryption mechanism for objects that will be stored in a new Amazon S3 bucket. The solutions architect created a CMK that is stored in AWS Key Management Service (AWS KMS) for this purpose.

The solutions architect created the following IAM policy and attached it to an IAM role:

During tests, me solutions architect was able to successfully get existing test objects m the S3 bucket However, attempts to upload a new object resulted in an error message. The error message stated that me action was forbidden.

Which action must me solutions architect add to the IAM policy to meet all the requirements?

A.

Kms:GenerateDataKey

B.

KmsGetKeyPolpcy

C.

kmsGetPubKKey

D.

kms:SKjn

Full Access
Question # 68

A company has 10 accounts that are part of an organization in AWS Organizations AWS Config is configured in each account All accounts belong to either the Prod OU or the NonProd OU

The company has set up an Amazon EventBridge rule in each AWS account to notify an Amazon Simple Notification Service (Amazon SNS) topic when an Amazon EC2 security group inbound rule is created with 0.0.0.0/0 as the source The company's security team is subscribed to the SNS topic

For all accounts in the NonProd OU the security team needs to remove the ability to create a security group inbound rule that includes 0.0.0.0/0 as the source

Which solution will meet this requirement with the LEAST operational overhead?

A.

Modify the EventBridge rule to invoke an AWS Lambda function to remove the security group inbound rule and to publish to the SNS topic Deploy the updated rule to the NonProd OU

B.

Add the vpc-sg-open-only-to-authorized-ports AWS Config managed rule to the NonProd OU

C.

Configure an SCP to allow the ec2 AulhonzeSecurityGrouplngress action when the value of the aws Sourcelp condition key is not 0.0.0.0/0 Apply the SCP to the NonProd OU

D.

Configure an SCP to deny the ec2 AuthorizeSecurityGrouplngress action when the value of the aws Sourcelp condition key is 0.0.0.0/0 Apply the SCP to the NonProd OU

Full Access
Question # 69

A company hosts a ticketing service on a fleet of Linux Amazon EC2 instances that are in an Auto Scaling group. The ticketing service uses a pricing file. The pricing file is stored in an Amazon S3 bucket that has S3 Standard storage. A central pricing solution that is hosted by a third party updates the pricing file.

The pricing file is updated every 1–15 minutes and has several thousand line items. The pricing file is downloaded to each EC2 instance when the instance launches.

The EC2 instances occasionally use outdated pricing information that can result in incorrect charges for customers.

Which solution will resolve this problem MOST cost-effectively?

A.

Create an AWS Lambda function to update an Amazon DynamoDB table with new prices each time the pricing file is updated. Update the ticketing service to use DynamoDB to look up pricing.

B.

Create an AWS Lambda function to update an Amazon EFS file share with the pricing file each time the file is updated. Update the ticketing service to use Amazon EFS to access the pricing file.

C.

Load Mountpoint for Amazon S3 onto the AMI of the EC2 instances. Configure Mountpoint for Amazon S3 to mount the S3 bucket that contains the pricing file. Update the ticketing service to point to the mount point and path to access the S3 object.

D.

Create an Amazon EBS volume. Use EBS Multi-Attach to attach the volume to every EC2 instance. When a new EC2 instance launches, configure the new instance to update the pricing file on the EBS volume. Update the ticketing service to point to the new local source.

Full Access
Question # 70

A company hosts an application on AWS. The application reads and writes objects that are stored in a single Amazon S3 bucket. The company must modify the application to deploy the application in two AWS Regions.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Set up an Amazon CloudFront distribution with the S3 bucket as an origin. Deploy the application to a second Region Modify the application to use the CloudFront distribution. Use AWS Global Accelerator to access the data in the S3 bucket.

B.

Create a new S3 bucket in a second Region. Set up bidirectional S3 Cross-Region Replication (CRR) between the original S3 bucket and the new S3 bucket. Configure an S3 Multi-Region Access Point that uses both S3 buckets. Deploy a modified application to both Regions.

C.

Create a new S3 bucket in a second Region Deploy the application in the second Region. Configure the application to use the new S3 bucket. Set up S3 Cross-Region Replication (CRR) from the original S3 bucket to the new S3 bucket.

D.

Set up an S3 gateway endpoint with the S3 bucket as an origin. Deploy the application to a second Region. Modify the application to use the new S3 gateway endpoint. Use S3 Intelligent-Tiering on the S3 bucket.

Full Access
Question # 71

A company is running an application that uses an Amazon ElastiCache for Redis cluster as a caching layer A recent security audit revealed that the company has configured encryption at rest for ElastiCache However the company did not configure ElastiCache to use encryption in transit Additionally, users can access the cache without authentication

A solutions architect must make changes to require user authentication and to ensure that the company is using end-to-end encryption

Which solution will meet these requirements?

A.

Create an AUTH token Store the token in AWS System Manager Parameter Store, as anencrypted parameter Create a new cluster with AUTH and configure encryption in transit Update the application to retrieve the AUTH token from Parameter Store when necessary and to use the AUTH token for authentication

B.

Create an AUTH token Store the token in AWS Secrets Manager Configure the existing cluster to use the AUTH token and configure encryption in transit Update the application to retrieve the AUTH token from Secrets Manager when necessary and to use the AUTH token for authentication.

C.

Create an SSL certificate Store the certificate in AWS Secrets Manager Create a new cluster and configure encryption in transit Update the application to retrieve the SSL certificate from Secrets Manager when necessary and to use the certificate for authentication.

D.

Create an SSL certificate Store the certificate in AWS Systems Manager Parameter Store, as an encrypted advanced parameter Update the existing cluster to configure encryption in transit Update the application to retrieve the SSL certificate from Parameter Store when necessary and to use the certificate for authentication

Full Access
Question # 72

A solutions architect is auditing the security setup of an AWS Lambda function for a company. The Lambda function retrieves the latest changes from an Amazon Aurora database. The Lambda function and the database run in the same VPC. Lambda environment variables are providing the database credentials to the Lambda function.

The Lambda function aggregates data and makes the data available in an Amazon S3 bucket that is configured for server-side encryption with AWS KMS managed encryption keys (SSE-KMS). The data must not travel across the internet. If any database credentials become compromised, the company needs a solution that minimizes the impact of the compromise.

What should the solutions architect recommend to meet these requirements?

A.

Enable IAM database authentication on the Aurora DB cluster. Change the IAM role for the Lambda function to allow the function to access the database by using IAM database authentication. Deploy a gateway VPC endpoint for Amazon S3 in the VPC.

B.

Enable IAM database authentication on the Aurora DB cluster. Change the IAM role for the Lambda function to allow the function to access the database by using IAM database authentication. Enforce HTTPS on the connection to Amazon S3 during data transfers.

C.

Save the database credentials in AWS Systems Manager Parameter Store. Set up password rotation on the credentials in Parameter Store. Change the IAM role for the Lambda function to allow the function to access Parameter Store. Modify the Lambda function to retrieve the credentials from Parameter Store. Deploy a gateway VPC endpoint for Amazon S3 in the VPC.

D.

Save the database credentials in AWS Secrets Manager. Set up password rotation on the credentials in Secrets Manager. Change the IAM role for the Lambda function to allow the function to access Secrets Manager. Modify the Lambda function to retrieve the credentials Om Secrets Manager. Enforce HTTPS on the connection to Amazon S3 during data transfers.

Full Access
Question # 73

A company that develops consumer electronics with offices in Europe and Asia has 60 TB of software images stored on premises in Europe The company wants to transfer the images to an Amazon S3 bucket in the ap-northeast-1 Region New software images are created daily and must be encrypted in transit The company needs a solution that does not require custom development toautomatically transfer all existing and new software images to Amazon S3

What is the next step in the transfer process?

A.

Deploy an AWS DataSync agent and configure a task to transfer the images to the S3 bucket

B.

Configure Amazon Kinesis Data Firehose to transfer the images using S3 Transfer Acceleration

C.

Use an AWS Snowball device to transfer the images with the S3 bucket as the target

D.

Transfer the images over a Site-to-Site VPN connection using the S3 API with multipart upload

Full Access
Question # 74

A company is planning to migrate an Amazon RDS for Oracle database to an RDS for PostgreSQL DB instance in another AWS account. A solutions architect needs to design a migration strategy that will require no downtime and that will minimize the amount of time necessary to complete the migration. The migration strategy must replicate all existing data and any new data that is created during the migration The target database must be identical to the source database at completion of the migration process

All applications currently use an Amazon Route 53 CNAME record as their endpoint for communication with the RDS for Oracle DB instance The RDS for Oracle DB instance is in a private subnet.

Which combination of steps should the solutions architect take to meet these requirements? (Select THREE)

A.

Create a new RDS for PostgreSQL DB instance in the target account Use the AWS Schema Conversion Tool (AWS SCT) to migrate the database schema from the source database to the target database

B.

Use the AWS Schema Conversion Tool (AWS SCT) to create a new RDS for PostgreSQL DB instance in the target account with the schema and initial data from thesource database

C.

Configure VPC peering between the VPCs in the two AWS accounts to provide connectivity to both DB instances from the target account. Configure the security groups that are attached to each DB instance to allow traffic on the database port from the VPC in the target account.

D.

Temporarily allow the source DB instance to be publicly accessible to provide connectivity from the VPC in the target account Configure the security groups that are attached to each DB instance to allow traffic on the database port from the VPC in the target account.

E.

Use AWS Database Migration Service (AWS DMS) in the target account to perform a full load plus change data capture (CDC) migration from the source database to the target database When the migration is complete, change the CNAME record to point to the target DB instance endpoint

F.

Use AWS Database Migration Service (AWS DMS) in the target account to perform a change data capture (CDC) migration from the source database to the target database When the migration is complete change the CNAME record to pointto the target DB instance endpoint.

Full Access
Question # 75

A company is planning to host a web application on AWS and works to load balance the traffic across a group of Amazon EC2 instances. One of the security requirements is to enable end-to-end encryption in transit between the client and the web server.

Which solution will meet this requirement?

A.

Place the EC2 instances behind an Application Load Balancer (ALB) Provision an SSL certificate using AWS Certificate Manager (ACM), and associate the SSL certificate with the ALB. Export the SSL certificate and install it on each EC2 instance. Configure the ALB to listen on port443 and to forward traffic to port 443 on the instances.

B.

Associate the EC2 instances with a target group. Provision an SSL certificate using AWS Certificate Manager (ACM). Create an Amazon CloudFront distribution and configure It to use the SSL certificate. Set CloudFront to use the target group as the origin server

C.

Place the EC2 instances behind an Application Load Balancer (ALB). Provision an SSL certificate using AWS Certificate Manager (ACM), and associate the SSL certificate with the ALB. Provision a third-party SSL certificate and install it on each EC2 instance. Configure the ALB to listen on port 443 and to forward traffic to port 443 on the instances.

D.

Place the EC2 instances behind a Network Load Balancer (NLB). Provision a third-party SSL certificate and install it on the NLB and on each EC2 instance. Configure the NLB to listen on port 443 and to forward traffic to port 443 on the instances.

Full Access
Question # 76

A company is replicating an application in a secondary AWS Region. The application in the primary Region reads from and writes to several Amazon DynamoDB tables. The application also reads customer data from an Amazon RDS for MySQL DB instance. The company plans to use the secondary Region as part of a disaster recovery plan. The application in the secondary Region must function without dependencies on the primary Region. Which solution will meet these requirements with the LEAST development effort?

A.

Configure DynamoDB global tables. Replicate the required tables to the secondary Region. Create a read replica of the RDS DB instance in the secondary Region. Configure the secondary application to use the DynamoDB tables and the read replica in the secondary Region.

B.

Use DynamoDB Accelerator (DAX) to cache the required tables in the secondary Region. Create a read replica of the RDS DB instance in the secondary Region. Configure the secondary application to use DAX and the read replica in the secondary Region.

C.

Configure DynamoDB global tables. Replicate the required tables to the secondary Region. Enable Multi-AZ for the RDS DB instance. Configure the standby replica to be created in the secondary Region. Configure the secondary application to use the DynamoDB tables and the standby replica in the secondary Region.

D.

Set up DynamoDB streams from the primary Region. Process the streams in the secondary Region to populate new DynamoDB tables. Create a read replica of the RDS DB instance in the secondary Region. Configure the secondary application to use the DynamoDB tables and the read replica in the secondary Region.

Full Access
Question # 77

A company is running an application in the AWS Cloud. The application collects and stores a large amount of unstructured data in an Amazon S3 bucket. The S3 bucket contains several terabytes of data and uses the S3 Standard storage class. The data increases in size by several gigabytes every day.

The company needs to query and analyze the data. The company does not access data that is more than 1-year-old. However, the company must retain all the data indefinitely for compliance reasons.

Which solution will meet these requirements MOST cost-effectively?

A.

Use S3 Select to query the data. Create an S3 Lifecycle policy to transition data that is more than 1 year old to S3 Glacier Deep Archive.

B.

Use Amazon Redshift Spectrum to query the data. Create an S3 Lifecycle policy to transition data that is more than 1 year old to S3 Glacier Deep Archive.

C.

Use an AWS Glue Data Catalog and Amazon Athena to query the data. Create an S3 Lifecycle policy to transition data that is more than 1 year old to S3 Glacier Deep Archive.

D.

Use Amazon Redshift Spectrum to query the data. Create an S3 Lifecycle policy to transition data that is more than 1 year old to S3 Intelligent-Tiering.

Full Access
Question # 78

A financial company is planning to migrate its web application from on premises to AWS. The company uses a third-party security tool to monitor the inbound traffic to the application. The company has used the security tool for the last 15 years, and the tool has no cloud solutions available from its vendor. The company's security team is concerned about how to integrate the security tool with AWS technology.

The company plans to deploy the application migration to AWS on Amazon EC2 instances. The EC2 instances will run in an Auto Scaling group in a dedicated VPC. The company needs to use the security tool to inspect all packets that come in and out of the VPC. This inspection must occur in real time and must not affect the application's performance. A solutions architect must design a target architecture on AWS that is highly available within an AWS Region.

Which combination of steps should the solutions architect take to meet these requirements? (Select TWO.)

A.

Deploy the security tool on EC2 instances in a new Auto Scaling group in the existing VPC.

B.

Deploy the web application behind a Network Load Balancer.

C.

Deploy an Application Load Balancer in front of the security tool instances.

D.

Provision a Gateway Load Balancer for each Availability Zone to redirect the traffic to the security tool.

E.

Provision a transit gateway to facilitate communication between VPCs.

Full Access
Question # 79

A company has an application that runs as a ReplicaSet of multiple pods in an Amazon Elastic Kubernetes Service (Amazon EKS) cluster. The EKS cluster has nodes in multiple Availability Zones. The application generates many small files that must be accessible across all running instances of the application. The company needs to back up the files and retain the backups for 1 year.

Which solution will meet these requirements while providing the FASTEST storage performance?

A.

Create an Amazon Elastic File System (Amazon EFS) file system and a mount target for each subnet that contains nodes in the EKS cluster. Configure the ReplicaSet to mount the file system. Direct the application to store files in the file system. Configure AWS Backup to back up and retain copies of the data for 1 year.

B.

Create an Amazon Elastic Block Store (Amazon EBS) volume. Enable the EBS Multi-Attach feature. Configure the ReplicaSet to mount the EBS volume. Direct the application to store files inthe EBS volume. Configure AWS Backup to back up and retain copies of the data for 1 year.

C.

Create an Amazon S3 bucket. Configure the ReplicaSet to mount the S3 bucket. Direct the application to store files in the S3 bucket. Configure S3 Versioning to retain copies of the data. Configure an S3 Lifecycle policy to delete objects after 1 year.

D.

Configure the ReplicaSet to use the storage available on each of the running application pods to store the files locally. Use a third-party tool to back up the EKS cluster for 1 year.

Full Access
Question # 80

A company stores data on an Amazon RDS for PostgreSQL DB instance in a private subnet in an AWS database account. Applications that are deployed in different VPCs access this data from different AWS accounts.

The company needs to manage the number of active connections to the DB instance. Communication between all accounts and the database account must be private and must not travel across the internet. The solution must be scalable to accommodate more consumer accounts in the future.

Which solution will meet these requirements?

A.

Connect all the VPCs in all the accounts by using a transit gateway. Configure a NAT gateway in a public subnet. Route traffic from the NAT gateway through the transit gateway to the DB instance.

B.

Create an RDS proxy in the AWS database account. Create a proxy endpoint in the private subnet. Configure AWS PrivateLink with a Network Load Balancer to provide access to the DB instance.

C.

Create a VPC peering connection between the VPC that contains the DB instance and each VPC from the other accounts. Configure an Application Load Balancer to provide access to the DB instance through the peering connection.

D.

Create a VPC peering connection between the VPC that contains the DB instance and each VPC from the other accounts. Configure a NAT gateway in a public subnet to route traffic to the DB instance.

Full Access
Question # 81

A global media company is planning a multi-Region deployment of an application. Amazon DynamoDB global tables will back the deployment to keep the user experience consistent across the two continents where users are concentrated. Each deployment will have a public Application Load Balancer (ALB). The company manages public DNS internally. The company wants to make the application available through an apex domain.

Which solution will meet these requirements with the LEAST effort?

A.

Migrate public DNS to Amazon Route 53. Create CNAME records for the apex domain to point to the ALB. Use a geolocation routing policy to route traffic based on user location.

B.

Place a Network Load Balancer (NLB) in front of the ALB. Migrate public DNS to Amazon Route 53. Create a CNAME record for the apex domain to point to the NLB's static IP address. Use a geolocation routing policy to route traffic based on user location.

C.

Create an AWS Global Accelerator accelerator with multiple endpoint groups that target endpoints in appropriate AWS Regions. Use the accelerator's static IP address to create a record in public DNS for the apex domain.

D.

Create an Amazon API Gateway API that is backed by AWS Lambda in one of the AWS Regions. Configure a Lambda function to route traffic to application deployments by using the round robin method. Create CNAME records for the apex domain to point to the API's URL.

Full Access
Question # 82

A company needs to architect a hybrid DNS solution. This solution will use an Amazon Route 53 private hosted zone for the domain cloud.example.com for the resources stored within VPCs.

The company has the following DNS resolution requirements:

• On-premises systems should be able to resolve and connect to cloud.example.com.

• All VPCs should be able to resolve cloud.example.com.

There is already an AWS Direct Connect connection between the on-premises corporate network and AWS Transit Gateway. Which architecture should the company use to meet these requirements with the HIGHEST performance?

A.

Associate the private hosted zone to all the VPCs. Create a Route 53 inbound resolver in theshared services VPC. Attach all VPCs to the transit gateway and create forwarding rules in the on-premises DNS server for cloud.example.com that point to the inbound resolver.

B.

Associate the private hosted zone to all the VPCs. Deploy an Amazon EC2 conditional forwarder in the shared services VPC. Attach all VPCs to the transit gateway and create forwarding rules in the on-premises DNS server for cloud.example.com that point to the conditional forwarder.

C.

Associate the private hosted zone to the shared services VPC. Create a Route 53 outbound resolver in the shared services VPC. Attach all VPCs to the transit gateway and create forwarding rules in the on-premises DNS server for cloud.example.com that point to the outbound resolver.

D.

Associate the private hosted zone to the shared services VPC. Create a Route 53 inbound resolver in the shared services VPC. Attach the shared services VPC to the transit gateway and create forwarding rules in the on-premises DNS server for cloud.example.com that point to the inbound resolver.

Full Access
Question # 83

Question:

A company is running a large containerized workload in the AWS Cloud using Amazon ECS. The development team recently started usingAWS Fargateinstead of EC2 in the ECS cluster. The company is worried about reaching themaximum number of ECS tasksallowed in the account.

A solutions architect must implement a solution that notifies the development team when Fargate usage reaches80% of the quota.

What should the architect do?

A.

Use CloudWatch to monitor the Sample Count for each service. Alert when usage exceeds 80%.

B.

Use CloudWatch to monitor ECS service quotas under the AWS/Usage namespace. Create an alarm when utilization exceeds 80%. Notify via SNS.

C.

Use a Lambda function to poll Fargate metrics. Notify via SES when usage exceeds 80%.

D.

Use AWS Config to monitor Fargate quotas. Notify via SES if non-compliant.

Full Access
Question # 84

Question:

How can applications in multiple AWS accounts privately access aPostgreSQL RDS instancein a separate AWS account, while managing the number of connections?

A.

Transit Gateway + NAT Gateway

B.

RDS Proxy + PrivateLink via NLB

C.

VPC Peering + Application Load Balancer

D.

VPC Peering + NAT Gateway

Full Access
Question # 85

A company is replicating an application in a secondary AWS Region. The application in the primary Region reads from and writes to several Amazon DynamoDB tables. The application also reads customer data from an Amazon RDS for MySQL DB instance.

The company plans to use the secondary Region as part of a disaster recovery plan. The application in the secondary Region must function without dependencies on the primary Region.

Which solution will meet these requirements with the LEAST development effort?

A.

Configure DynamoDB global tables. Replicate the required tables to the secondary Region. Create a read replica of the RDS DB instance in the secondary Region. Configure the secondary application to use the DynamoDB tables and the read replica in the secondary Region.

B.

Use DynamoDB Accelerator (DAX) to cache the required tables in the secondary Region. Create a read replica of the RDS DB instance in the secondary Region. Configure the secondary application to use DAX and the read replica in the secondary Region.

C.

Configure DynamoDB global tables. Replicate the required tables to the secondary Region. Enable Multi-AZ for the RDS DB instance. Configure the standby replica to be created in the secondary Region. Configure the secondary application to use the DynamoDB tables and the standby replica in the secondary Region.

D.

Set up DynamoDB streams from the primary Region. Process the streams in the secondary Region to populate new DynamoDB tables. Create a read replica of the RDS DB instance in the secondary Region. Configure the secondary application to use the DynamoDB tables and the read replica in the secondary Region.

Full Access
Question # 86

A company has mounted sensors to collect information about environmental parameters such as humidity and light throughout all the company's factories. The company needs to stream and analyze the data in the AWS Cloud in real time. If any of the parameters fall out of acceptable ranges, the factory operations team must receive a notification immediately.

Which solution will meet these requirements?

A.

Stream the data to an Amazon Kinesis Data Firehose delivery stream. Use AWS Step Functions to consume and analyze the data in the Kinesis Data Firehose delivery stream. use Amazon Simple Notification Service (Amazon SNS) to notify the operations team.

B.

Stream the data to an Amazon Managed Streaming for Apache Kafka (Amazon MSK) cluster. Set up a trigger in Amazon MSK to invoke an AWS Fargate taskto analyze the data. Use Amazon Simple Email Service (Amazon SES) to notify the operations team.

C.

Stream the data to an Amazon Kinesis data stream. Create an AWS Lambda function to consume the Kinesis data stream and to analyze the data. UseAmazon Simple Notification Service (Amazon SNS) to notify the operations team.

D.

Stream the data to an Amazon Kinesis Data Analytics application. I-Jse an automatically scaled and containerized service in Amazon Elastic Container Service (Amazon ECS) to consume and analyze the data. use Amazon Simple Email Service (Amazon SES) to notify the operations team.

Full Access
Question # 87

A company is running a three-tier web application in an on-premises data center. The frontend is a PHP application that is served by an Apache web server. The middle tier is a monolithic Java SE application. The storage tier is a 60 TB PostgreSQL database.

The three-tier web application recently crashed and became unresponsive. The database also reached capacity because of read operations. The company wants to migrate to AWS to resolve these issues and improve scalability,

Which combination of steps will meet these requirements with the LEAST development effort? (Select THREE.)

A.

Configure an Auto Scaling group of Amazon EC2 instances behind an Application Load Balancer to host the web server. Use Amazon EFS for the frontend static assets.

B.

Host the static single-page application on Amazon S3. Use an Amazon CloudFront distribution to serve the application.

C.

Create a Docker container to run the Java SE application. Use AWS Fargate to host the container.

D.

Create an AWS Elastic Beanstalk environment for Java to host the Java SE application.

E.

Migrate the PostgreSQL database to an Amazon EC2 instance that is larger than the on-premisesPostgreSQL database.

F.

Use AWS DMS to replatform the PostgreSQL database to an Amazon Aurora PostgreSQL database. Use Aurora Auto Scaling for read replicas.

Full Access
Question # 88

A company owns a chain of travel agencies and is running an application in the AWS Cloud. Company employees use the application to search for information about travel destinations. Destination content is updated four times each year.

Two fixed Amazon EC2 instances serve the application. The company uses an Amazon Route 53 public hosted zone with a multivalue record of travel.example.com that returns the Elastic IP addresses for the EC2 instances. The application uses Amazon DynamoDB as its primary data store. The company uses a self-hosted Redis instance as a caching solution.

During content updates, the load on the EC2 instances and the caching solution increases drastically. This increased load has led to downtime on several occasions. A solutions architect must update the application so that the application is highly available and can handle the load that is generated by the content updates.

Which solution will meet these requirements?

A.

Set up DynamoDB Accelerator (DAX) as in-memory cache. Update the application to use DAX. Create an Auto Scaling group for the EC2 instances. Create an Application Load Balancer (ALB). Set the Auto Scaling group as a target for the ALB. Update the Route 53 record to use a simple routing policy that targets the ALB's DNS alias. Configure scheduled scaling for the EC2 instances before the content updates.

B.

Set up Amazon ElastiCache for Redis. Update the application to use ElastiCache. Create an Auto Scaling group for the EC2 instances. Create an Amazon CloudFront distribution, and set the Auto Scaling group as an origin for the distribution. Update the Route 53 record to use a simple routing policy that targets the CloudFront distribution's DNS alias. Manually scale up EC2 instances before the content updates.

C.

Set up Amazon ElastiCache for Memcached. Update the application to use ElastiCache Create an Auto Scaling group for the EC2 instances. Create an Application Load Balancer (ALB). Set the Auto Scaling group as a target for the ALB. Update the Route 53 record to use a simple routing policy that targets the ALB's DNS alias. Configure scheduled scaling for the application before the content updates.

D.

Set up DynamoDB Accelerator (DAX) as in-memory cache. Update the application to use DAX. Create an Auto Scaling group for the EC2 instances. Create an Amazon CloudFront distribution, and set the Auto Scaling group as an origin for the distribution. Update the Route 53 record to use a simple routing policy that targets the CloudFront distribution's DNS alias. Manually scale up EC2 instances before the content updates.

Full Access
Question # 89

A company migrated an application from on-premises VMs to Amazon EC2 instances in an AWS account 6 months ago. Now, the company needs to deploy the application to a second AWS Region. During the next 2 years, the company will redesign parts of the application to use AWS Lambda functions. The company is expecting stable usage patterns for the application for the next 3 years.

Which strategy will MAXIMIZE the cost savings for the company?

A.

Evaluate Savings Plans recommendations each year in AWS Cost Management. Purchase a 1-year Compute Savings Plan based on the recommendations.

B.

Evaluate Savings Plans recommendations by using AWS Compute Optimizer. Purchase a 3-year EC2 Instance Savings Plan based on the recommendations. Use Compute Optimizer to adjust the Lambda functions based on recommendations.

C.

Purchase a 1-year EC2 Instance Savings Plan with No Upfront payment. Review the infrastructure after each year. As parts of the application transition to Lambda functions, decrease the hourly commitment for future EC2 Instance Savings Plans.

D.

Purchase a 3-year EC2 Instance Savings Plan with No Upfront payment. As parts of the application transition to Lambda functions, decrease the hourly commitment for the EC2 Instance Savings Plan.

Full Access
Question # 90

A travel company built a web application that uses Amazon SES to send email notifications to users. The company needs to enable logging to help troubleshoot email delivery issues. The company also needs the ability to do searches that are based on recipient, subject, and time sent.

Which combination of steps should a solutions architect take to meet these requirements? (Select TWO.)

A.

Create an Amazon SES configuration set with Amazon Data Firehose as the destination. Choose to send logs to an Amazon S3 bucket.

B.

Enable AWS CloudTrail logging. Specify an Amazon S3 bucket as the destination for the logs.

C.

Use Amazon Athena to query the logs in the Amazon S3 bucket for recipient, subject, and time sent.

D.

Create an Amazon CloudWatch log group. Configure Amazon SES to send logs to the log group.

E.

Use Amazon Athena to query the logs in Amazon CloudWatch for recipient, subject, and time sent.

Full Access
Question # 91

A telecommunications company is running an application on AWS. The company has set up an AWS Direct Connect connection between the company's on-premises data center and AWS. The company deployed the application on Amazon EC2 instances in multiple Availability Zones behind an internal Application Load Balancer (ALB). The company's clients connect from the on-premises network by using HTTPS. The TLS terminates in the ALB. The company has multiple target groups and uses path-based routing to forward requests based on the URL path.

The company is planning to deploy an on-premises firewall appliance with an allow list that is based on IP address. A solutions architect must develop a solution to allow traffic flow to AWS from the on-premises network so that the clients can continue to access the application.

Which solution will meet these requirements?

A.

Configure the existing ALB to use static IP addresses. Assign IP addresses in multiple Availability Zones to the ALB. Add the ALB IP addresses to the firewall appliance.

B.

Create a Network Load Balancer (NLB). Associate the NLB with one static IP addresses in multiple Availability Zones. Create an ALB-type target group for the NLB and add the existing ALAdd the NLB IP addresses to the firewall appliance. Update the clients to connect to the NLB.

C.

Create a Network Load Balancer (NLB). Associate the LNB with one static IP addresses in multiple Availability Zones. Add the existing target groups to the NLB. Update the clients to connect to the NLB. Delete the ALB Add the NLB IP addresses to the firewall appliance.

D.

Create a Gateway Load Balancer (GWLB). Assign static IP addresses to the GWLB in multiple Availability Zones. Create an ALB-type target group for the GWLB and add the existing ALB. Add the GWLB IP addresses to the firewall appliance. Update the clients to connect to the GWLB.

Full Access
Question # 92

A company gives users the ability to upload images from a custom application. The upload process invokes an AWS Lambda function that processes and stores the image in an Amazon S3 bucket. The application invokes the Lambda function by using a specific function version ARN.

The Lambda function accepts image processing parameters by using environment variables. The company often adjusts the environment variables of the Lambda function to achieve optimal image processing output. The company tests different parameters and publishes a new function version with the updated environment variables after validating results. This update process also requires frequent changes to the custom application to invoke the new function version ARN. These changes cause interruptions for users.

A solutions architect needs to simplify this process to minimize disruption to users.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Directly modify the environment variables of the published Lambda function version. Use the SLATEST version to test image processing parameters.

B.

Create an Amazon DynamoDB table to store the image processing parameters. Modify the Lambda function to retrieve the image processing parameters from the DynamoDB table.

C.

Directly code the image processing parameters within the Lambda function and remove the environment variables. Publish a new function version when the company updates the parameters.

D.

Create a Lambda function alias. Modify the client application to use the function alias ARN. Reconfigure the Lambda alias to point to new versions of the function when the company finishes testing.

Full Access
Question # 93

A company wants to migrate its website to AWS. The website uses containers that are deployed in an on-premises, self-managed Kubernetes cluster. All data for the website is stored in an on-premises PostgreSQL database.

The company has decided to migrate the on-premises Kubernetes cluster to an Amazon EKS cluster. The EKS cluster will use EKS managed node groups with a static number of nodes. The company will also migrate the on-premises database to an Amazon RDS for PostgreSQL database.

A solutions architect needs to estimate the total cost of ownership (TCO) for this workload before the migration.

Which solution will provide the required TCO information?

A.

Request access to Migration Evaluator. Run the Migration Evaluator Collector and import the data. Configure a scenario. Export a Quick Insights report from Migration Evaluator.

B.

Launch AWS DMS for the on-premises database. Generate an assessment report. Create an estimate in AWS Pricing Calculator for the costs of the EKS migration.

C.

Initialize AWS Application Migration Service. Add the on-premises servers as source servers. Launch a test instance. Output a TCO report from Application Migration Service.

D.

Access the AWS Cloud Economics Center webpage to assess the AWS Cloud Value Framework. Create an AWS Cost and Usage report from the Cloud Value Framework.

Full Access
Question # 94

A company has multiple lines of business (LOBs) that toll up to the parent company. The company has asked its solutions architect to develop a solution with the following requirements

• Produce a single AWS invoice for all of the AWS accounts used by its LOBs.

• The costs for each LOB account should be broken out on the invoice

• Provide the ability to restrict services and features in the LOB accounts, as defined by the company's governance policy

• Each LOB account should be delegated full administrator permissions regardless of the governance policy

Which combination of steps should the solutions architect take to meet these requirements'? (Select TWO.)

A.

Use AWS Organizations to create an organization in the parent account for each LOB Then invite each LOB account to the appropriate organization

B.

Use AWS Organizations to create a single organization in the parent account Then, invite each LOB's AWS account lo join the organization.

C.

Implement service quotas to define the services and features that are permitted and apply the quotas to each LOB. as appropriate

D.

Create an SCP that allows only approved services and features then apply the policy to the LOB accounts

E.

Enable consolidated billing in the parent account's billing console and link the LOB accounts

Full Access
Question # 95

A solutions architect is designing an application to accept timesheet entries from employees on their mobile devices. Timesheets will be submitted weekly, with most of the submissions occurring on Friday. The data must be stored in a format that allows payroll administrators to run monthly reports The infrastructure must be highly available and scale to match the rate of incoming data and reporting requests.

Which combination of steps meets these requirements while minimizing operational overhead? (Select TWO}

A.

Deploy the application to Amazon EC2 On-Demand Instances with load balancing across multiple Availability Zones. Use scheduled Amazon EC2 Auto Scaling to add capacity before the high volume of submissions on Fridays

B.

Deploy the application in a container using Amazon Elastic Container Service (Amazon ECS) with load balancing across multiple Availability Zones Use scheduled Service Auto Scaling to add capacity before the high volume of submissions on Fridays

C.

Deploy the application front end to an Amazon S3 bucket served by Amazon CloudFront Deploy the application backend using Amazon API Gateway with an AWSLambda proxy integration

D.

Store the timesheet submission data in Amazon Redshift Use Amazon QuickSight to generate the reports using Amazon Redshift as the data source

E.

Store the timesheet submission data in Amazon S3. Use Amazon Athena and Amazon QuickSight to generate the reports using Amazon S3 as the data source.

Full Access
Question # 96

A company is migrating a legacy application from an on-premises data center to AWS. The application consists of a single application server and a Microsoft SQL

Server database server. Each server is deployed on a VMware VM that consumes 500 TB of data across multiple attached volumes.

The company has established a 10 Gbps AWS Direct Connect connection from the closest AWS Region to its on-premises data center. The Direct Connect connection is not currently in use by other services.

Which combination of steps should a solutions architect take to migrate the application with the LEAST amount of downtime? (Choose two.)

A.

Use an AWS Server Migration Service (AWS SMS) replication job to migrate the database server VM to AWS.

B.

Use VM Import/Export to import the application server VM.

C.

Export the VM images to an AWS Snowball Edge Storage Optimized device.

D.

Use an AWS Server Migration Service (AWS SMS) replication job to migrate the application server VM to AWS.

E.

Use an AWS Database Migration Service (AWS DMS) replication instance to migrate the database to an Amazon RDS DB instance.

Full Access
Question # 97

A software company needs to create short-lived test environments to test pull requests as part of its development process. Each test environment consists of a single Amazon EC2 instance that is in an Auto Scaling group.

The test environments must be able to communicate with a central server to report test results. The central server is located in an on-premises data center. A solutions architect must implement a solution so that the company can create and delete test environments without any manual intervention. The company has created a transit gateway with a VPN attachment to the on-premises network.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Create an AWS CloudFormation template that contains a transit gateway attachment and related routing configurations. Create a CloudFormation stack set that includes this template. Use CloudFormation StackSets to deploy a new stack for each VPC in the account. Deploy a new VPC for each test environment.

B.

Create a single VPC for the test environments. Include a transit gateway attachment and related routing configurations. Use AWS CloudFormation to deploy all test environments into the VPC.

C.

Create a new OU in AWS Organizations for testing. Create an AWS CloudFormation template that contains a VPC, necessary networking resources, a transit gateway attachment, and related routing configurations. Create a CloudFormation stack set that includes this template. Use CloudFormation StackSets for deployments into each account under the testing 01.1. Create a new account for each test environment.

D.

Convert the test environment EC2 instances into Docker images. Use AWS CloudFormation to configure an Amazon Elastic Kubernetes Service (Amazon EKS) cluster in a new VPC, create a transit gateway attachment, and create related routing configurations. Use Kubernetes to manage the deployment and lifecycle of the test environments.

Full Access
Question # 98

A company hosts a web application on AWS in the us-east-1 Region The application servers are distributed across three Availability Zones behind an Application Load Balancer. The database is hosted in a MySQL database on an Amazon EC2 instance A solutions architect needs to design a Cross-Region data recovery solution using AWS services with an RTO of less than 5 minutes and an RPO of less than 1 minute. The solutions architect is deploying application servers in us-west-2, and has configured Amazon Route 53 hearth checks and DNS failover to us-west-2

Which additional step should the solutions architect take?

A.

Migrate the database to an Amazon RDS tor MySQL instance with a cross-Region read replica in us-west-2

B.

Migrate the database to an Amazon Aurora global database with the primary in us-east-1 and the secondary in us-west-2

C.

Migrate the database to an Amazon RDS for MySQL instance with a Multi-AZ deployment.

D.

Create a MySQL standby database on an Amazon EC2 instance in us-west-2

Full Access
Question # 99

A company is migrating a document processing workload to AWS. The company has updated many applications to natively use the Amazon S3 API to store, retrieve, and modify documents that a processing server generates at a rate of approximately 5 documents every second. After the document processing is finished, customers can download the documents directly from Amazon S3.

During the migration, the company discovered that it could not immediately update the processing server that generates many documents to support the S3 API. The server runs on Linux and requires fast local access to the files that the server generates and modifies. When the server finishes processing, the files must be available to the public for download within 30 minutes.

Which solution will meet these requirements with the LEAST amount of effort?

A.

Migrate the application to an AWS Lambda function. Use the AWS SDK for Java to generate, modify, and access the files that the company stores directly in Amazon S3.

B.

Set up an Amazon S3 File Gateway and configure a file share that is linked to the document store. Mount the file share on an Amazon EC2 instance by using NFS. When changes occur in Amazon S3, initiate a RefreshCache API call to update the S3 File Gateway.

C.

Configure Amazon FSx for Lustre with an import and export policy. Link the new file system to an S3 bucket. Install the Lustre client and mount the document store to an Amazon EC2 instance by using NFS.

D.

Configure AWS DataSync to connect to an Amazon EC2 instance. Configure a task to synchronize the generated files to and from Amazon S3.

Full Access
Question # 100

A company manages multiple AWS accounts by using AWS Organizations. Under the root OU. the company has two OUs: Research and DataOps.

Because of regulatory requirements, all resources that the company deploys in the organizationmust reside in the ap-northeast-1 Region. Additionally. EC2 instances that the company deploys in the DataOps OU must use a predefined list of instance types

A solutions architect must implement a solution that applies these restrictions. The solution must maximize operational efficiency and must minimize ongoing maintenance

Which combination of steps will meet these requirements? (Select TWO )

A.

Create an IAM role in one account under the DataOps OU Use the ec2 Instance Type condition key in an inline policy on the role to restrict access to specific instance types.

B.

Create an IAM user in all accounts under the root OU Use the aws RequestedRegion condition key in an inline policy on each user to restrict access to all AWS Regions except ap-northeast-1.

C.

Create an SCP Use the aws:RequestedRegion condition key to restrict access to all AWS Regions except ap-northeast-1 Apply the SCP to the root OU.

D.

Create an SCP Use the ec2Reo»on condition key to restrict access to all AWS Regions except ap-northeast-1. Apply the SCP to the root OU. the DataOps OU. and the Research OU.

E.

Create an SCP Use the ec2:lnstanceType condition key to restrict access to specific instance types Apply the SCP to the DataOps OU.

Full Access
Question # 101

A company that is developing a mobile game is making game assets available in two AWS Regions. Game assets are served from a set of Amazon EC2 instances behind an Application Load Balancer (ALB) in each Region. The company requires game assets to be fetched from the closest Region. If game assess become unavailable in the closest Region, they should the fetched from the other Region.

What should a solutions architect do to meet these requirement?

A.

Create an Amazon CloudFront distribution. Create an origin group with one origin for each ALB. Set one of the origins as primary.

B.

Create an Amazon Route 53 health check tor each ALB. Create a Route 53 failover routing record pointing to the two ALBs. Set the Evaluate Target Health value Yes.

C.

Create two Amazon CloudFront distributions, each with one ALB as the origin. Create an Amazon Route 53 failover routing record pointing to the two CloudFront distributions. Set the Evaluate Target Health value to Yes.

D.

Create an Amazon Route 53 health check tor each ALB. Create a Route 53 latency alias record pointing to the two ALBs. Set the Evaluate Target Health value to Yes.

Full Access
Question # 102

A finance company is running its business-critical application on current-generation Linux EC2 instances The application includes a self-managed MySQL database performing heavy I/O operations. The application is working fine to handle a moderate amount of traffic during the month. However, it slows down during the final three days of each month due to month-end reporting, even though the company is using Elastic Load Balancers and Auto Scaling within its infrastructure to meet the increased demand.

Which of the following actions would allow the database to handle the month-end load with the LEAST impact on performance?

A.

Pre-warming Elastic Load Balancers, using a bigger instance type, changing all Amazon EBS volumes to GP2 volumes.

B.

Performing a one-time migration of the database cluster to Amazon RDS. and creatingseveral additional read replicas to handle the load during end of month

C.

Using Amazon CioudWatch with AWS Lambda to change the type. size, or IOPS of Amazon EBS volumes in the cluster based on a specific CloudWatch metric

D.

Replacing all existing Amazon EBS volumes with new PIOPS volumes that have the maximum available storage size and I/O per second by taking snapshots before the end of the month and reverting back afterwards.

Full Access
Question # 103

A company is migrating to AWS and needs to inventory physical and virtual servers, apps, and database relationships to properly rightsize and plan migration.

A.

Use Migration Evaluator with Agentless Collector.

B.

Use Migration Hub with Discovery Agent and Strategy Recommendations.

C.

Use Migration Hub with Agentless Collector and Migration Service.

D.

Use Migration Hub import tool.

Full Access
Question # 104

Question:

How should a companyefficiently processinfrequently uploaded S3 data using a long-running (up to 25 minutes) custom application?

A.

ECS on Fargate triggered by EventBridge

B.

Lambda in Step Functions with 30-min timeout

C.

ECS with EC2 and Glue crawler

D.

Lambda triggered by fan-out HTTP EventBridge logic

Full Access
Question # 105

A company uses AWS Organizations. The company creates a central VPC in an AWS account that is designated for networking in a single AWS Region. The central VPC has an AWS Site-to-Site VPN connection to the company's on-premises network. A solutions architect must create another AWS account that uses the same networking resources that the central VPC uses.

Which solution meets these requirements MOST cost-effectively?

A.

Create a VPC in the new AWS account. Create a new Site-to-Site VPN connection for the on-premises connection.

B.

Use AWS Resource Access Manager to share the VPN connection in the central VPC with the new AWS account.

C.

Create a VPC in the new AWS account. Configure a virtual private gateway to connect to the central VPC.

D.

Use AWS Resource Access Manager to share the subnets in the central VPC with the new AWS account.

Full Access
Question # 106

A company plans to migrate a three-tiered web application from an on-premises data center to AWS The company developed the Ui by using server-side JavaScript libraries The business logic and API tier uses a Python-based web framework The data tier runs on a MySQL database

The company custom built the application to meet business requirements The company does not want to re-architect the application The company needs a solution to replatform the application to AWS with the least possible amount of development The solution needs to be highly available and must reduce operational overhead

Which solution will meet these requirements?

A.

Deploy the UI to a static website on Amazon S3 Use Amazon CloudFront to deliver the website Build the business logic in a Docker image Store the image in AmazonElastic Container Registry (Amazon ECR) Use Amazon Elastic Container Service (Amazon ECS) with the Fargate launch type to host the website with an Application Load Balancer in front Deploy the data layer to an Amazon Aurora MySQL DB cluster

B.

Build the UI and business logic in Docker images Store the images in Amazon Elastic Container Registry (Amazon ECR) Use Amazon Elastic Container Service (Amazon ECS) with the Fargate launch type to host the UI and business logic applications with an Application LoadBalancer in front Migrate the database to an Amazon RDS for MySQL Multi-AZ DB instance

C.

Deploy the UI to a static website on Amazon S3 Use Amazon CloudFront to deliver the website Convert the business logic to AWS Lambda functions Integrate the functions with Amazon API Gateway Deploy the data layer to an Amazon Aurora MySQL DB cluster

D.

Build the UI and business logic in Docker images Store the images in Amazon Elastic Container Registry (Amazon ECR) Use Amazon Elastic Kubernetes Service(Amazon EKS) with Fargate profiles to host the UI and business logic Use AWS Database Migration Service (AWS DMS) to migrate the data layer to Amazon DynamoDB

Full Access
Question # 107

A company has multiple business units that each have separate accounts on AWS. Each business unit manages its own network with several VPCs that have CIDR ranges that overlap. The company’s marketing team has created a new internal application and wants to make the application accessible to all the other business units. The solution must use private IP addresses only.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Instruct each business unit to add a unique secondary CIDR range to the business unit's VPC. Peer the VPCs and use a private NAT gateway in the secondary range to route traffic to the marketing team.

B.

Create an Amazon EC2 instance to serve as a virtual appliance in the marketing account's VPC. Create an AWS Site-to-Site VPN connection between the marketing team and each business unit's VPC. Perform NAT where necessary.

C.

Create an AWS PrivateLink endpoint service to share the marketing application. Grant permission to specific AWS accounts to connect to the service. Create interface VPC endpoints in other accounts to access the application by using private IP addresses.

D.

Create a Network Load Balancer (NLB) in front of the marketing application in a private subnet. Create an API Gateway API. Use the Amazon API Gateway private integration to connect the API to the NLB. Activate IAM authorization for the API. Grant access to the accounts of the other business units.

Full Access
Question # 108

A company is planning to migrate an application to AWS. The application runs as a Docker container and uses an NFS version 4 file share.

A solutions architect must design a secure and scalable containerized solution that does not require provisioning or management of the underlying infrastructure.

Which solution will meet these requirements?

A.

Deploy the application containers by using Amazon Elastic Container Service (Amazon ECS) with the Fargate launch type. Use Amazon Elastic File System (Amazon EFS) for shared storage. Reference the EFS file system ID, container mount point, and EFS authorization IAM role in the ECS task definition.

B.

Deploy the application containers by using Amazon Elastic Container Service (Amazon ECS) with the Fargate launch type. Use Amazon FSx for Lustre for shared storage. Reference the FSx for Lustre file system ID, container mount point, and FSx for Lustre authorization IAM role in the ECS task definition.

C.

Deploy the application containers by using Amazon Elastic Container Service (Amazon ECS) with the Amazon EC2 launch type and auto scaling turned on. Use Amazon Elastic File System (Amazon EFS) for shared storage. Mount the EFS file system on the ECS container instances. Add the EFS authorization IAM role to the EC2 instance profile.

D.

Deploy the application containers by using Amazon Elastic Container Service (Amazon ECS) with the Amazon EC2 launch type and auto scaling turned on. Use Amazon Elastic Block Store (Amazon EBS) volumes with Multi-Attach enabled for shared storage. Attach the EBS volumes to ECS container instances. Add the EBS authorization IAM role to an EC2 instance profile.

Full Access
Question # 109

A company's CISO has asked a Solutions Architect to re-engineer the company's current CI/CD practices to make sure patch deployments to its applications can happen as quickly as possible with minimal downtime if vulnerabilities are discovered. The company must also be able to quickly roll back a change in case of errors.

The web application is deployed in a fleet of Amazon EC2 instances behind an Application Load Balancer. The company is currently using GitHub to host the application source code, and has configured an AWS CodeBuild project to build the application. The company also intends to use AWS CodePipeline to trigger builds from GitHub commits using the existing CodeBuild project.

What CI/CD configuration meets all of the requirements?

A.

Configure CodePipeline with a deploy stage using AWS CodeDeploy configured for in-place deployment. Monitor the newly deployed code, and, if there are any issues, push another code update.

B.

Configure CodePipeline with a deploy stage using AWS CodeDeploy configured for blue/green deployments. Monitor the newly deployed code, and, if there are any issues, trigger a manual rollback using CodeDeploy.

C.

Configure CodePipeline with a deploy stage using AWS CloudFormation to create a pipeline for test and production stacks. Monitor the newly deployed code, and, if there are any issues, push another code update.

D.

Configure the CodePipeline with a deploy stage using AWS OpsWorks and in-place deployments. Monitor the newly deployed code, and, if there are any issues, push another code update.

Full Access
Question # 110

A company manages hundreds of AWS accounts centrally in an organization in AWS Organizations. The company recently started to allow product teams to create and manage their own S3 access points in their accounts. The S3 access points can be accessed only within VPCs, not on the internet.

What is the MOST operationally efficient way to enforce this requirement?

A.

Set the S3 access point resource policy to deny the s3:CreateAccessPoint action unless the s3:AccessPointNetworkOrigin condition key evaluates to vpc.

B.

Create an SCP at the root level in the organization to deny the s3:CreateAccessPoint action unless the s3:AccessPointNetworkOrigin condition key evaluates to VPC.

C.

Use AWS CloudFormation StackSets to create a new IAM policy in each AWS account that allows the s3:CreateAccessPoint action only if the s3:AccessPointNetworkOrigin condition key evaluates to VPC.

D.

Set the S3 bucket policy to deny the s3:CreateAccessPoint action unless the s3:AccessPointNetworkOrigin condition key evaluates to VPC.

Full Access
Question # 111

A company is migrating infrastructure for its massive multiplayer game to AWS. The game's application features a leaderboard where players can see rankings in real time. The leaderboard requires microsecond reads and single-digit-millisecond write latencies. The datasets are single-digit terabytes in size and must be available to accept writes in less than a minute if a primary node failure occurs.

The company needs a solution in which data can persist for further analytical processing through a data pipeline.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Create an Amazon ElastiCache (Redis OSS) cluster with cluster mode enabled. Configure the application to interact with the primary node.

B.

Create an Amazon RDS database with a read replica. Configure the application to point writes to the writer endpoint. Configure the application to point reads to the reader endpoint.

C.

Create an Amazon MemoryDB cluster in Multi-AZ mode. Configure the application to interact with the primary node.

D.

Create multiple Redis nodes on Amazon EC2 instances that are spread across multiple Availability Zones. Configure backups to Amazon S3.

Full Access
Question # 112

A company's solutions architect needs to provide secure Remote Desktop connectivity to users for Amazon EC2 Windows instances that are hosted in a VPC. The solution must integrate centralized user management with the company's on-premises Active Directory. Connectivity to the VPC is through the internet. The company has hardware that can be used to establish an AWS Site-to-Site VPN connection.

Which solution will meet these requirements MOST cost-effectively?

A.

Deploy a managed Active Directory by using AWS Directory Service for Microsoft Active Directory. Establish a trust with the on-premises Active Directory.Deploy an EC2 instance as a bastion host in the VPC. Ensure that the EC2 instance is joined to the domain. Use the bastion host to access the target instances through RDP.

B.

Configure AWS IAM Identity Center (AWS Single Sign-On) to integrate with the on-premises Active Directory by using the AWS Directory Service for MicrosoftActive Directory AD Connector. Configure permission sets against user groups for access to AWS Systems Manager. Use Systems Manager Fleet Manager toaccess the target instances through RDP.

C.

Implement a VPN between the on-premises environment and the target VPC. Ensure that the target instances are joined to the on-premises Active Directory domain over the VPN connection. Configure RDP access through the VPN. Connect from the company's network to the target instances.

D.

Deploy a managed Active Directory by using AWS Directory Service for Microsoft Active Directory. Establish a trust with the on-premises Active Directory.Deploy a Remote Desktop Gateway on AWS by using an AWS Quick Start. Ensure that the Remote Desktop Gateway is joined to the domain. Use the Remote Desktop Gateway to access the target instances through RDP.

Full Access
Question # 113

A company is using Amazon API Gateway to deploy a private REST API that will provide access to sensitive data. The API must be accessible only from an application that is deployed in a VPC. The company deploys the API successfully. However, the API is not accessible from an Amazon EC2 instance that is deployed in the VPC.

Which solution will provide connectivity between the EC2 instance and the API?

A.

Create an interface VPC endpoint for API Gateway. Attach an endpoint policy that allows apigateway:* actions. Disable private DNS naming for the VPC endpoint. Configure an API resource policy that allows access from the VPC. Use the VPC endpoint's DNS name to access the API.

B.

Create an interface VPC endpoint for API Gateway. Attach an endpoint policy that allows the execute-api:lnvoke action. Enable private DNS naming for the VPC endpoint. Configure an API resource policy that allows access from the VPC endpoint. Use the API endpoint's DNS names to access the API. Most Voted

C.

Create a Network Load Balancer (NLB) and a VPC link. Configure private integration between API Gateway and the NLB. Use the API endpoint's DNS names to access the API.

D.

Create an Application Load Balancer (ALB) and a VPC Link. Configure private integration between API Gateway and the ALB. Use the ALB endpoint's DNS name to access the API.

Full Access
Question # 114

A company is migrating internal business applications to Amazon EC2 and Amazon RDS in a VPC. The migration requires connecting the cloud-based applications to the on-premises internal network. The company wants to set up an AWS 5ite-to-5ite VPN connection. The company has created two separate customer gateways. The gateways are configured for static routing and have been assigned distinct public IP addresses.

Which solution will meet these requirements?

A.

Create one virtual private gateway. Associate the virtual private gateway with the VPC. Enable route propagation for the virtual private gateway in all VPC route tables. Create two Site-to-Slte VPN connections with two tunnels for each connection. Configure the Site-to-Slte VPN connections to use the virtual private gateway and to use separate customer gateways.

B.

Create one customer gateway. Associate the customer gateway with the VPC. Enable route propagation for the customer gateway in all VPC route tables. Create two Site-to-Site VPN connections with two tunnels for each connection. Configure the Site-to-Site VPN connections to use the customer gateway.

C.

Create two virtual private gateways. Associate the virtual private gateways with the VPC. Enable route propagation for both customer gateways in all VPC route tables. Create two Site-to-Site VPN connections with two tunnels for each connection. Configure the Site-to-Site VPN connections to use separate virtual private gateways and separate customer gateways.

D.

Create two virtual private gateways. Associate the virtual private gateways with the VPC. Enable route propagation for both customer gateways in all VPC route tables. Create four Site-to-Site VPN connections with one tunnel for each connection. Configure the Site-to-Site VPN connections into groups of two. Configure each group to connect to separate customer gateways and separate virtual private gateways.

Full Access
Question # 115

A company is creating a centralized logging service running on Amazon EC2 that will receive and analyze logs from hundreds of AWS accounts. AWS PrivateLink is being used to provide connectivity between the client services and the logging service.

In each AWS account with a client, an interface endpoint has been created for the logging service and is available. The logging service running on EC2 instances with a Network Load Balancer (NLB) are deployed in different subnets. The clients are unable to submit logs using the VPC endpoint.

Which combination of steps should a solutions architect take to resolve this issue? (Select TWO.)

A.

Check that the NACL is attached to the logging service subnet to allow communications to and from the NLB subnets. Check that the NACL is attached to the NLB subnet to allow communications to and from the logging service subnets running on EC2 instances.

B.

Check that the NACL is attached to the logging service subnets to allow communications to and from the interface endpoint subnets. Check that the NACL is attached to the interface endpoint subnet to allow communications to and from the logging service subnets running on EC2 instances.

C.

Check the security group for the logging service running on the EC2 instances to ensure it allows Ingress from the NLB subnets.

D.

Check the security group for the loggia service running on EC2 instances to ensure it allows ingress from the clients.

E.

Check the security group for the NLB to ensure it allows ingress from the interlace endpoint subnets.

Full Access
Question # 116

A company is migrating an application from on-premises infrastructure to the AWS Cloud. During migration design meetings, the company expressed concerns about the availability and recovery options for its legacy Windows file server. The file server contains sensitive business-critical data that cannot be recreated in the event of data corruption or data loss. According to compliance requirements, the data must not travel across the public internet. The company wants to move to AWS managed services where possible.

The company decides to store the data in an Amazon FSx for Windows File Server file system. A solutions architect must design a solution that copies the data to another AWS Region for disaster recovery (DR) purposes.

Which solution will meet these requirements?

A.

Create a destination Amazon S3 bucket in the DR Region. Establish connectivity between the FSx for Windows File Server file system in the primary Region and the S3 bucket in the DR Region by using Amazon FSx File Gateway. Configure the S3 bucket as a continuous backup source in FSx File Gateway.

B.

Create an FSx for Windows File Server file system in the DR Region. Establish connectivity between the VPC in the primary Region and the VPC in the DR Region by using AWS Site-to-Site VPN. Configure AWS DataSync to communicate by using VPN endpoints.

C.

Create an FSx for Windows File Server file system in the DR Region. Establish connectivity between the VPC in the primary Region and the VPC in the DR Region by using VPC peering. Configure AWS DataSync to communicate by using interface VPC endpoints with AWS PrivateLink.

D.

Create an FSx for Windows File Server file system in the DR Region. Establish connectivity between the VPC in the primary Region and the VPC in the DR Region by using AWS Transit Gateway in each Region. Use AWS Transfer Family to copy files between the FSx for Windows File Server file system in the primary Region and the FSx for Windows File Server file system in the DR Region over the private AWS backbone network.

Full Access
Question # 117

A company has 50 AWS accounts that are members of an organization in AWS Organizations Each account contains multiple VPCs The company wants to use AWS Transit Gateway to establishconnectivity between the VPCs in each member account Each time a new member account is created, the company wants to automate the process of creating a new VPC and a transit gateway attachment.

Which combination of steps will meet these requirements? (Select TWO)

A.

From the management account, share the transit gateway with member accounts by using AWS Resource Access Manager

B.

Prom the management account, share the transit gateway with member accounts by using an AWS Organizations SCP

C.

Launch an AWS CloudFormation stack set from the management account that automatical^/ creates a new VPC and a VPC transit gateway attachment in a member account. Associate the attachment with the transit gateway in the management account by using the transit gateway ID.

D.

Launch an AWS CloudFormation stack set from the management account that automatical^ creates a new VPC and a peering transit gateway attachment in a member account. Share the attachment with the transit gateway in the management account by using a transit gateway service-linked role.

E.

From the management account, share the transit gateway with member accounts by using AWS Service Catalog

Full Access
Question # 118

A company consists of two separate business units. Each business unit has its own AWS account within a single organization in AWS Organizations. The business units regularly share sensitive documents with each other. To facilitate sharing, the company created an Amazon S3 bucket in each account and configured two-way replication between the S3 buckets. The S3 buckets have millions of objects.

Recently, a security audit identified that neither S3 bucket has encryption at rest enabled. Company policy requires that all documents must be stored with encryption at rest. The company wants to implement server-side encryption with Amazon S3 managed encryption keys (SSE-S3).

What is the MOST operationally efficient solution that meets these requirements?

A.

Turn on SSE-S3 on both S3 buckets. Use S3 Batch Operations to copy and encrypt the objects in the same location.

B.

Create an AWS Key Management Service (AWS KMS) key in each account. Turn on server-side encryption with AWS KMS keys (SSE-KMS) on each S3 bucket by using the corresponding KMS key in that AWS account. Encrypt the existing objects by using an S3 copy command in the AWS CLI.

C.

Turn on SSE-S3 on both S3 buckets. Encrypt the existing objects by using an S3 copy command in the AWS CLI.

D.

Create an AWS Key Management Service (AWS KMS) key in each account. Turn on server-side encryption with AWS KMS keys (SSE-KMS) on each S3 bucket by using the corresponding KMS key in that AWS account. Use S3 Batch Operations to copy the objects into the same location.

Full Access
Question # 119

A company is running a serverless application that consists of several AWS Lambda functions and Amazon DynamoDB tables. The company has created new functionality that requires the Lambda functions to access an Amazon Neptune DB cluster. The Neptune DB cluster is located in three subnets in a VPC.

Which of the possible solutions will allow the Lambda functions to access the Neptune DB cluster and DynamoDB tables? (Select TWO.)

A.

Create three public subnets in the Neptune VPC, and route traffic through an internet gateway. Host the Lambda functions in the three new public subnets.

B.

Create three private subnets in the Neptune VPC, and route internet traffic through a NAT gateway. Host the Lambda functions in the three new private subnets.

C.

Host the Lambda functions outside the VPC. Update the Neptune security group to allow access from the IP ranges of the Lambda functions.

D.

Host the Lambda functions outside the VPC. Create a VPC endpoint for the Neptune database, and have the Lambda functions access Neptune over the VPC endpoint.

E.

Create three private subnets in the Neptune VPC. Host the Lambda functions in the three new isolated subnets. Create a VPC endpoint for DynamoDB, and route DynamoDB traffic to the VPC endpoint.

Full Access
Question # 120

A company is using an organization in AWS Organizations to manage hundreds of AWS accounts. A solutions architect is working on a solution to provide baseline protection for the Open Web Application Security Project (OWASP) top 10 web application vulnerabilities. The solutions architect is using AWS WAF for all existing and new Amazon CloudFront distributions that are deployed within the organization.

Which combination of steps should the solutions architect take to provide the baseline protection? (Select THREE.)

A.

Enable AWS Config in all accounts.

B.

Enable Amazon GuardDuty in all accounts.

C.

Enable all features for the organization.

D.

Use AWS Firewall Manager to deploy AWS WAF rules in all accounts for all CloudFront distributions.

E.

Use AWS Shield Advanced to deploy AWS WAF rules in all accounts for all CloudFront distributions.

F.

Use AWS Security Hub to deploy AWS WAF rules in all accounts for all CloudFront distributions.

Full Access
Question # 121

A company is expanding. The company plans to separate its resources into hundreds of different AWS accounts in multiple AWS Regions. A solutions architect must recommend a solution that denies access to any operations outside of specifically designated Regions.

Which solution will meet these requirements?

A.

Create IAM roles for each account. Create IAM policies with conditional allow permissions that include only approved Regions for the accounts.

B.

Create an organization in AWS Organizations. Create IAM users for each account. Attach a policy to each user to block access to Regions where an account cannot deploy infrastructure.

C.

Launch an AWS Control Tower landing zone. Create OUs and attach SCPs that deny access to run services outside of the approved Regions.

D.

Enable AWS Security Hub in each account. Create controls to specify the Regions where an account can deploy infrastructure.

Full Access
Question # 122

Question:

A company hosts an application that uses several Amazon EC2 instances in an Auto Scaling group behind an Application Load Balancer (ALB). During the initial startup of the EC2 instances, the EC2 instances run user data scripts to download critical content for the application from an Amazon S3 bucket.

The EC2 instances are launching correctly. However, after a period of time, the EC2 instances are terminated with the following error message:

“An instance was taken out of service in response to an ELB system health check failure.”

The only recent change to the deployment is that the company added a large amount of critical content to the S3 bucket.

What should a solutions architect do so that the production environment can deploy successfully?

A.

Increase the size of the EC2 instances.

B.

Increase the health check timeout for the ALB.

C.

Change the health check path for the ALB.

D.

Increase the health check grace period for the Auto Scaling group.

Full Access
Question # 123

A global ecommerce company has many data centers worldwide. The company needs scalable cloud storage for legacy file applications. Requirements:

Must support iSCSI access from on-premises servers.

Must support point-in-time snapshots via AWS Backup.

Must retain low-latency access to frequently accessed data.Which solution will meet these requirements?

A.

Provision an AWS Storage Gateway tape gateway with S3 and AWS Backup.

B.

Use Amazon FSx File Gateway and S3 File Gateway. Use AWS Backup.

C.

Provision an AWS Storage Gateway volume gateway in cache mode. Back up the volumes using AWS Backup.

D.

Provision an AWS Storage Gateway file gateway in cache mode. Use AWS Backup.

Full Access
Question # 124

A company has multiple AWS accounts. The company recently had a security audit that revealed many unencrypted Amazon Elastic Block Store (Amazon EBS) volumes attached to Amazon EC2 instances.

A solutions architect must encrypt the unencrypted volumes and ensure that unencrypted volumes will be detected automatically in the future. Additionally, the company wants a solution that can centrally manage multiple AWS accounts with a focus on compliance and security.

Which combination of steps should the solutions architect take to meet these requirements? (Choose two.)

A.

Create an organization in AWS Organizations. Set up AWS Control Tower, and turn on the strongly recommended guardrails. Join all accounts to the organization. Categorize the AWS accounts into OUs.

B.

Use the AWS CLI to list all the unencrypted volumes in all the AWS accounts. Run a script to encrypt all the unencrypted volumes in place.

C.

Create a snapshot of each unencrypted volume. Create a new encrypted volume from the unencrypted snapshot. Detach the existing volume, and replace it with the encrypted volume.

D.

Create an organization in AWS Organizations. Set up AWS Control Tower, and turn on the mandatory guardrails. Join all accounts to the organization. Categorize the AWS accounts into OUs.

E.

Turn on AWS CloudTrail. Configure an Amazon EventBridge (Amazon CloudWatch Events) rule to detect and automatically encrypt unencrypted volumes.

Full Access
Question # 125

A company has implemented an ordering system using an event-driven architecture. During initial testing, the system stopped processing orders. Further log analysis revealed that one order message in an Amazon Simple Queue Service (Amazon SQS) standard queue was causing an error on the backend and blocking all subsequentorder messages The visibility timeout of the queue is set to 30 seconds, and the backend processing timeout is set to 10 seconds. A solutions architect needs to analyze faulty order messages and ensure that the system continues to process subsequent messages.

Which step should the solutions architect take to meet these requirements?

A.

Increase the backend processing timeout to 30 seconds to match the visibility timeout.

B.

Reduce the visibility timeout of the queue to automatically remove the faulty message.

C.

Configure a new SQS FIFO queue as a dead-letter queue to isolate the faulty messages.

D.

Configure a new SQS standard queue as a dead-letter queue to isolate the faulty messages.

Full Access
Question # 126

A company has a solution that analyzes weather data from thousands of weather stations. The weather stations send the data over an Amazon API Gateway REST API that has an AWS Lambda function integration. The Lambda function calls a third-party service for data pre-processing. The third-party service gets overloadedand fails the pre-processing, causing a loss of data.

A solutions architect must improve the resiliency of the solution. The solutions architect must ensure that no data is lost and that data can be processed later if failures occur.

What should the solutions architect do to meet these requirements?

A.

Create an Amazon Simple Queue Service (Amazon SQS) queue. Configure the queue as the dead-letter queue for the API.

B.

Create two Amazon Simple Queue Service (Amazon SQS) queues: a primary queue and a secondary queue. Configure the secondary queue as the dead-letter queue for the primary queue. Update the API to use a new integration to the primary queue. Configure the Lambda function as the invocation target for the primary queue.

C.

Create two Amazon EventBridge event buses: a primary event bus and a secondary event bus. Update the API to use a new integration to the primary event bus. Configure an EventBridge rule to react to all events on the primary event bus. Specify the Lambda function as the target of the rule. Configure the secondary event bus as the failure destination for the Lambda function.

D.

Create a custom Amazon EventBridge event bus. Configure the event bus as the failure destination for the Lambda function.

Full Access
Question # 127

A company is running a compute workload by using Amazon EC2 Spot Instances in an Auto Scaling group. The launch template uses two placement groups and one instance type.

Recently, a monitoring system reported Auto Scaling instance launch failures that correlated with longer wait times for system users. The company needs to improve the overall reliability of the workload.

Which solution will meet these requirements?

A.

Create a launch configuration that uses attribute-based instance type selection. Configure the Auto Scaling group to use the new launch configuration.

B.

Create a launch configuration that uses a larger instance type. Configure the Auto Scaling group to use the launch configuration and the launch template.

C.

Create a new launch template version that increases the number of placement groups to 3. Configure the Auto Scaling group to use the new launch template version.

D.

Create a new launch template version that uses attribute-based instance type selection. Configure the Auto Scaling group to use the new launch template version.

Full Access
Question # 128

A team collects and routes behavioral data for an entire company The company runs a Multi-AZ VPC environment with public subnets, private subnets, and in internet gateway Each public subnet also contains a NAT gateway Most of the company's applications read from and write to Amazon Kinesis Data Streams. Most of the workloads am in private subnets.

A solutions architect must review the infrastructure The solutions architect needs to reduce costs and maintain the function of the applications The solutions architect uses Cost Explorer and notices that the cost in the EC2-Other category is consistently high A further review shows that NatGateway-Bytes charges are increasing the cost in the EC2-Other category.

What should the solutions architect do to meet these requirements?

A.

Enable VPC Flow Logs. Use Amazon Athena to analyze the logs for traffic that can be removed. Ensure that security groups are Mocking traffic that is responsible for high costs.

B.

Add an interface VPC endpoint for Kinesis Data Streams to the VPC. Ensure that applications have the correct IAM permissions to use the interface VPC endpoint.

C.

Enable VPC Flow Logs and Amazon Detective Review Detective findings for traffic that is not related to Kinesis Data Streams Configure security groups to block that traffic

D.

Add an interface VPC endpoint for Kinesis Data Streams to the VPC. Ensure that the VPC endpoint policy allows traffic from the applications.

Full Access
Question # 129

A company recently deployed an application on AWS. The application uses Amazon DynamoDB.The company measured the application load and configured the RCUs and WCUs on the DynamoDB table to match the expected peak load. The peak load occurs once a week for a 4-hour period and is double the average load. The application load is close to the average load tor the rest of the week. The access pattern includes many more writes to the table than reads of the table.

A solutions architect needs to implement a solution to minimize the cost of the table.

Which solution will meet these requirements?

A.

Use AWS Application Auto Scaling to increase capacity during the peak period. Purchase reserved RCUs and WCUs to match the average load.

B.

Configure on-demand capacity mode for the table.

C.

Configure DynamoDB Accelerator (DAX) in front of the table. Reduce the provisioned read capacity to match the new peak load on the table.

D.

Configure DynamoDB Accelerator (DAX) in front of the table. Configure on-demand capacity mode for the table.

Full Access
Question # 130

Question:

A company mandates that all internal AWS communications useprivate IPs. A solutions architect createdinterface VPC endpointsfor public AWS services like S3. However, service names are still resolving topublic IP addresses, and the internal apps cannot connect.

What should the architect do to resolve this issue?

A.

Update the subnet route table with a route to the interface endpoint.

B.

Enable the private DNS option on the VPC attributes.

C.

Configure the security group on the interface endpoint to allow access.

D.

Configure a private hosted zone with conditional forwarding.

Full Access
Question # 131

A company has a data lake in Amazon S3 that needs to be accessed by hundreds of applications across many AWS accounts. The company's information security policy states that the S3 bucket must not be accessed over the public internet and that each application should have the minimum permissions necessary to function.

To meet these requirements, a solutions architect plans to use an S3 access point that is restricted to specific VPCs for each application.

Which combination of steps should the solutions architect take to implement this solution? (Select TWO.)

A.

Create an S3 access point for each application in the AWS account that owns the S3 bucket. Configure each access point to be accessible only from the application's VPC. Update the bucket policy to require access from an access point.

B.

Create an interface endpoint for Amazon S3 in each application's VPC. Configure the endpoint policy to allow access to an S3 access point. Create a VPC gateway attachment for the S3 endpoint.

C.

Create a gateway endpoint for Amazon S3 in each application's VPC. Configure the endpoint policy to allow access to an S3 access point. Specify the route table that is used to access the access point.

D.

Create an S3 access point for each application in each AWS account and attach the access points to the S3 bucket. Configure each access point to be accessible only from the application's VPC. Update the bucket policy to require access from an access point.

E.

Create a gateway endpoint for Amazon S3 in the data lake's VPC. Attach an endpoint policy to allow access to the S3 bucket. Specify the route table that is used to access the bucket.

Full Access
Question # 132

A company recently completed the migration from an on-premises data center to the AWS Cloud by using a replatforming strategy. One of the migrated servers is running a legacy Simple Mail Transfer Protocol (SMTP) service that a critical application relies upon. The application sends outbound email messages to the company’s customers. The legacy SMTP server does not support TLS encryption and uses TCP port 25. The application can use SMTP only.

The company decides to use Amazon Simple Email Service (Amazon SES) and to decommission the legacy SMTP server. The company has created and validated the SES domain. The company has lifted the SES limits.

What should the company do to modify the application to send email messages from Amazon SES?

A.

Configure the application to connect to Amazon SES by using TLS Wrapper. Create an IAM role that has ses:SendEmail and ses:SendRawEmail permissions. Attach the IAM role to an Amazon EC2 instance.

B.

Configure the application to connect to Amazon SES by using STARTTLS. Obtain Amazon SES SMTP credentials. Use the credentials to authenticate with Amazon SES.

C.

Configure the application to use the SES API to send email messages. Create an IAM role that has ses:SendEmail and ses:SendRawEmail permissions. Use the IAM role as a service role for Amazon SES.

D.

Configure the application to use AWS SDKs to send email messages. Create an IAM user for Amazon SES. Generate API access keys. Use the access keys to authenticate with Amazon SES.

Full Access
Question # 133

A software as a service (SaaS) based company provides a case management solution to customers A3 part of the solution. The company uses a standalone Simple Mail Transfer Protocol (SMTP) server to send email messages from an application. The application also stores an email template for acknowledgement email messages that populate customer data before the application sends the email message to the customer.

The company plans to migrate this messaging functionality to the AWS Cloud and needs to minimize operational overhead.

Which solution will meet these requirements MOST cost-effectively?

A.

Set up an SMTP server on Amazon EC2 instances by using an AMI from the AWS Marketplace. Store the email template in an Amazon S3 bucket. Create an AWS Lambda function to retrieve the template from the S3 bucket and to merge the customer data from the application with the template. Use an SDK in the Lambda function to send the email message.

B.

Set up Amazon Simple Email Service (Amazon SES) to send email messages. Store the email template in an Amazon S3 bucket. Create an AWS Lambda function to retrieve the template from the S3 bucket and to merge the customer data from the application with the template. Use an SDK in the Lambda function to send the email message.

C.

Set up an SMTP server on Amazon EC2 instances by using an AMI from the AWS Marketplace. Store the email template in Amazon Simple Email Service (Amazon SES) with parameters for the customer data.Create an AWS Lambda function to call the SES template and to pass customer data to replace the parameters. Use the AWS Marketplace SMTP server to send the email message.

D.

Set up Amazon Simple Email Service (Amazon SES) to send email messages. Store the email template on Amazon SES with parameters for the customer data. Create an AWS Lambda function to call the SendTemplatedEmail API operation and to pass customer data to replace the parameters and the email destination.

Full Access
Question # 134

A company runs a highly available data collection application on Amazon EC2 in the eu-north-1 Region. The application collects data from end-user devices and writes records to an Amazon Kinesis data stream and a set of AWS Lambda functions that process the records. The company persists the output of the record processing to an Amazon S3 bucket in eu-north-1. The company uses the data in the S3 bucket as a data source for Amazon Athena.

The company wants to increase its global presence. A solutions architect must launch the data collection capabilities in the sa-east-1 and ap-northeast-1 Regions. The solutions architect deploys the application, the Kinesis data stream, and the Lambda functions in the two new Regions. The solutions architect keeps the S3 bucket in eu-north-1 to meet a requirement to centralize the data analysis.

During testing of the new setup, the solutions architect notices a significant lag on the arrival of data from the new Regions to the S3 bucket.

Which solution will improve this lag time the MOST?

A.

In each of the two new Regions, set up the Lambda functions to run in a VPC. Set up an S3 gateway endpoint in that VPC.

B.

Turn on S3 Transfer Acceleration on the S3 bucket in eu-north-1. Change the application to use the new S3 accelerated endpoint when the application uploads data to the S3 bucket.

C.

Create an S3 bucket in each of the two new Regions. Set the application in each new Region to upload to its respective S3 bucket. Set up S3 Cross-Region Replication to replicate data to the S3 bucket in eu-north-1.

D.

Increase the memory requirements of the Lambda functions to ensure that they have multiple cores available. Use the multipart upload feature when the application uploads data to Amazon S3 from Lambda.

Full Access
Question # 135

A retail company needs to provide a series of data files to another company, which is its business partner These files are saved in an Amazon S3 bucket under Account A. which belongs to the retail company. The business partner company wants one of its 1AM users. User_DataProcessor. to access the files from its own AWS account (Account B).

Which combination of steps must the companies take so that User_DataProcessor can access the S3 bucket successfully? (Select TWO.)

A.

Turn on the cross-origin resource sharing (CORS) feature for the S3 bucket in Account

B.

In Account A. set the S3 bucket policy to the following:

C.

C. In Account A. set the S3 bucket policy to the following:

D.

D. In Account B. set the permissions of User_DataProcessor to the following:

E.

E. In Account Bt set the permissions of User_DataProcessor to the following:

Full Access
Question # 136

A company is planning a large event where a promotional offer will be introduced. The company's website is hosted on AWS and backed by an Amazon RDS for PostgreSQL DB instance. The website explains the promotion and includes a sign-up page that collects user information andpreferences. Management expects large and unpredictable volumes of traffic periodically, which will create many database writes. A solutions architect needs to build a solution that does not change the underlying data model and ensures that submissions are not dropped before they are committed to the database.

Which solutions meets these requirements?

A.

Immediately before the event, scale up the existing DB instance to meet the anticipated demand. Then scale down after the event.

B.

Use Amazon SQS to decouple the application and database layers. Configure an AWS Lambda function to write items from the queue into the database.

C.

Migrate to Amazon DynamoDB and manage throughput capacity with automatic scaling.

D.

Use Amazon ElastiCache (Memcached) to increase write capacity to the DB instance.

Full Access
Question # 137

A company has AWS accounts that are in an organization in AWS Organizations. The company wants to track Amazon EC2 usage as a metric. The company's architecture

team must receive a daily alert if the EC2 usage is more than 10% higher thanthe average EC2 usage from the last 30 days.

Which solution will meet these requirements?

A.

Configure AWS Budgets in the organization's management account. Specify a usage type of EC2 running hours. Specify a daily period. Set the budget amountto be 10% more than the reported average usage for the last 30 days from AWS Cost Explorer. Configure an alert to notify the architecture team if the usagethreshold is met.

B.

Configure AWS Cost Anomaly Detection in the organization's management account. Configure a monitor type of AWS Service. Apply a filter of Amazon EC2.Configure an alert subscription to notify the architecture team if the usage is 10% more than the average usage for the last 30 days.

C.

Enable AWS Trusted Advisor in the organization's management account. Configure a cost optimization advisory alert to notify the architecture team if the EC2usage is 10% more than the reported average usage for the last 30 days.

D.

Configure Amazon Detective in the organization's management account. Configure an EC2 usage anomaly alert to notify the architecture team if Detectiveidentifies a usage anomaly of more than 10%.

Full Access
Question # 138

A company is running an application on premises. The application uses a set of web servers that host a static React-based single-page application (SPA), a Node.js API, and a MYSQL database server. The database is read intensive. The company will need to expand the database's storage at an unpredictable rate.

The company must migrate the application to AWS. The company also must modernize the architecture to reduce infrastructure management and increase scalability.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use AWS Database Migration Service (AWS DMS) to migrate the database to Amazon RDS for MySQL. Use AWS Application Migration Service to migrate theweb application to a fleet of Amazon EC2 instances behind an Elastic Load Balancing (ELB) load balancer. Use a Spot Fleet with a request type of request to host the API.

B.

Use AWS Database Migration Service (AWS DMS) to migrate the database to Amazon Aurora MySQL. Copy the web files to an Amazon S3 bucket and set upweb hosting. Copy the API code to AWS Lambda functions. Configure Amazon API Gateway to point to the Lambda functions.

C.

Use AWS Database Migration Service (AWS DMS) to migrate the database to a MySQL database that runs on Amazon EC2 instances. Use AWS DataSync tomigrate the web files and API files to an Amazon FSx for Windows File Server file system. Set up a fleet of EC2 instances in an Auto Scaling group as web servers. Mount the FSx for Windows File Server file system.

D.

Use AWS Application Migration Service to migrate the database to Amazon EC2 instances. Copy the web files to containers that run on Amazon ElasticKubernetes Service (Amazon EKS). Set up an Elastic Load Balancing (ELB) load balancer for the EC2 instances and EKS containers. Copy the API code to AWS Lambda functions. Configure Amazon API Gateway to point to the Lambda functions.

Full Access
Question # 139

A company has an application that is deployed on Amazon EC2 instances behind an Application Load Balancer (ALB). The instances are part of an Auto Scaling group.Theapplication has unpredictable workloads and frequently scales out and in. The company's development team wants to analyze application logs to find ways to improve the application's performance. However, the logs are no longer available after instances scale in.

Which solution will give the development team the ability to view the application logs after a scale-in event?

A.

Enable access logs for the ALB. Store the logs in an Amazon S3 bucket.

B.

Configure the EC2 instances lo publish logs to Amazon CloudWatch Logs by using the unified CloudWatch agent.

C.

Modify the Auto Scaling group to use a step scaling policy.

D.

Instrument the application with AWS X-Ray tracing.

Full Access
Question # 140

A company needs to gather data from an experiment in a remote location that does not have internet connectivity. During the experiment, sensors that are connected to a total network will generate 6 TB of data in a preprimary formal over the course of 1 week. The sensors can be configured to upload their data files to an FTP server periodically, but the sensors do not have their own FTP server. The sensors also do not support other protocols. The company needs to collect the data centrally and move lie data to object storage in the AWS Cloud as soon. as possible after the experiment.

Which solution will meet these requirements?

A.

Order an AWS Snowball Edge Compute Optimized device. Connect the device to the local network. Configure AWS DataSync with a target bucket name, and unload the data over NFS to the device. After the experiment return the device to AWS so that the data can be loaded into Amazon S3.

B.

Order an AWS Snowcone device, including an Amazon Linux 2 AMI. Connect the device to the local network. Launch an Amazon EC2 instance on the device. Create a shell script that periodically downloads data from each sensor. After the experiment, return the device to AWS so that the data can be loaded as an Amazon Elastic Block Store [Amazon EBS) volume.

C.

Order an AWS Snowcone device, including an Amazon Linux 2 AMI. Connect the device to the local network. Launch an Amazon EC2 instance on the device. Install and configure an FTP server on the EC2 instance. Configure the sensors to upload data to the EC2 instance. After the experiment, return the device to AWS so that the data can be loaded into Amazon S3.

D.

Order an AWS Snowcone device. Connect the device to the local network. Configure the device to use Amazon FSx. Configure the sensors to upload data to the device. Configure AWS DataSync on the device to synchronize the uploaded data with an Amazon S3 bucket Return the device to AWS so that the data can be loaded as an Amazon Elastic Block Store (Amazon EBS) volume.

Full Access
Question # 141

A company has an application that generates reports and stores them in an Amazon S3 bucket When a user accesses their report, the application generates a signed URL to allow the user to download the report. The company's security team has discovered that the files are public and that anyone can download them without authentication The company has suspended the generation of new reports until the problem is resolved.

Which set of actions will immediately remediate the security issue without impacting the application's normal workflow?

A.

Create an AWS Lambda function that applies a deny all policy for users who are not authenticated. Create a scheduled event to invoke the Lambda function

B.

Review the AWS Trusted Advisor bucket permissions check and implement the recommended actions.

C.

Run a script that puts a private ACL on all of the objects in the bucket.

D.

Use the Block Public Access feature in Amazon S3 to set the IgnorePublicAcls option to TRUE on the bucket.

Full Access
Question # 142

A company is processing videos in the AWS Cloud by using Amazon EC2 instances in an Auto Scaling group. It takes 30 minutes to process a video. Several EC2 instances scale in and out depending on the number of videos in an Amazon Simple Queue Service (Amazon SQS) queue.

The company has configured the SQS queue with a redrive policy that specifies a target dead-letter queue and a maxReceiveCount of 1. The company has set the visibility timeout for the SQS queue to 1 hour. The company has set up an Amazon CloudWatch alarm to notify the development team when there are messages in the dead-letter queue.

Several times during the day, the development team receives notification that messages are in the dead-letter queue and that videos have not been processed properly. An investigation finds no errors in the application logs.

How can the company solve this problem?

A.

Turn on termination protection for the EC2 instances.

B.

Update the visibility timeout for the SOS queue to 3 hours.

C.

Configure scale-in protection for the instances during processing.

D.

Update the redrive policy and set maxReceiveCount to 0.

Full Access
Question # 143

A solutions architect is determining the DNS strategy for an existing VPC. The VPC is provisioned to use the 10.24.34.0/24 CIDR block. The VPC also uses Amazon Route 53 Resolver for DNS. New requirements mandate that DNS queries must use private hosted zones. Additionally, instances that have public IP addresses must receive corresponding public hostnames.

Which solution will meet these requirements to ensure that the domain names are correctly resolved within the VPC?

A.

Create a private hosted zone. Activate the enableDnsSupport attribute and the enableDnsHostnames attribute for the VPC. Update the VPC DHCP options set to include domain-name-servers-10.24.34.2.

B.

Create a private hosted zone. Associate the private hosted zone with the VPC. Activate the enableDnsSupport attribute and the enableDnsHostnames attribute for the VPC. Create a new VPC DHCP options set, and configure domain-name-servers=AmazonProvidedDNS. Associate the new DHCP options set with the VPC.

C.

Deactivate the enableDnsSupport attribute for the VPC. Activate the enableDnsHostnames attribute for the VPC. Create a new VPC DHCP options set, and configure domain-name-servers=10.24.34.2. Associate the new DHCP options set with the VPC.

D.

Create a private hosted zone. Associate the private hosted zone with the VPC. Activate the enableDnsSupport attribute for the VPC. Deactivate the enableDnsHostnames attribute for the VPC. Update the VPC DHCP options set to include domain-name-servers=AmazonProvidedDNS.

Full Access
Question # 144

A company collects air quality data from sensors. The company plans to use the MQTT protocol to send the data to AWS IoT Core. The company will process the data and then will store the data in an Amazon Aurora database.

During periods of low air quality, sensors will send data more frequently. The company must buffer the data during these periods to make sure that no data is lost before the data is processed and stored.

Which solution will meet these requirements?

A.

Create an Amazon Kinesis data stream. Create an AWS IoT rule action and set the data stream as the target. Create an AWS Step Functions state machine that is invoked by the data stream. Use the state machine to process and store the data.

B.

Create an Amazon Kinesis data stream. Create an AWS IoT rule action and set the data stream as the target. Create an application that runs on an Amazon ECS cluster with the AWS Fargate launch type. Configure the application to read data from the data stream, process the data, and store the data.

C.

Create an Amazon SQS queue. Create an AWS IoT rule action and set the SQS queue as the target. Create an AWS Step Functions state machine that is invoked by the SQS queue. Use the state machine to process and store the data.

D.

Create an Amazon SNS topic. Create an AWS IoT rule action and set the SNS topic as the target. Create an application that runs on an Amazon ECS cluster with the AWS Fargate launch type. Configure the application to read data from the SNS topic, process the data, and store the data.

Full Access
Question # 145

A retail company wants to improve its application architecture. The company's applications register new orders, handle returns of merchandise, and provide analytics. The applications store retail data in a MySQL database and an Oracle OLAP analytics database. All the applications and databases are hosted on Amazon EC2 instances.

Each application consists of several components that handle different parts of the order process. These components use incoming data from different sources. A separate ETL job runs every week and copies data from each application to the analytics database.

A solutions architect must redesign the architecture into an event-driven solution that uses serverless services. The solution must provide updated analytics in near real time.

Which solution will meet these requirements?

A.

Migrate the individual applications as microservices to Amazon ECS containers that use AWS Fargate. Keep the retail MySQL database on Amazon EC2. Move the analytics database to Amazon Neptune. Use Amazon SQS to send all the incoming data to the microservices and the analytics database.

B.

Create an Auto Scaling group for each application. Specify the necessary number of EC2 instances in each Auto Scaling group. Migrate the retail MySQL database and the analytics database to Amazon Aurora MySQL. Use Amazon SNS to send all the incoming data to the correct EC2 instances and the analytics database.

C.

Migrate the individual applications as microservices to Amazon EKS containers that use AWS Fargate. Migrate the retail MySQL database to Amazon Aurora Serverless MySQL. Migrate the analytics database to Amazon Redshift Serverless. Use Amazon EventBridge to send all the incoming data to the microservices and the analytics database.

D.

Migrate the individual applications as microservices to Amazon AppStream 2.0. Migrate the retail MySQL database to Amazon Aurora MySQL. Migrate the analytics database to Amazon Redshift Serverless. Use AWS IoT Core to send all the incoming data to the microservices and the analytics database.

Full Access
Question # 146

A company has hundreds of AWS accounts. The company uses an organization in AWS Organizations to manage all the accounts. The company has turned on all features.

A finance team has allocated a daily budget for AWS costs. The finance team must receive an email notification if the organization's AWS costs exceed 80% of the allocated budget. A solutions architect needs to implement a solution to track the costs and deliver the notifications.

Which solution will meet these requirements?

A.

In the organization's management account, use AWS Budgets to create a budget that has a daily period. Add an alert threshold and set the value to 80%. Use Amazon Simple Notification Service (Amazon SNS) to notify the finance team.

B.

In the organization’s management account, set up the organizational view feature for AWS Trusted Advisor. Create an organizational view report for cost optimization.Set an alert threshold of 80%. Configure notification preferences. Add the email addresses of the finance team.

C.

Register the organization with AWS Control Tower. Activate the optional cost control (guardrail). Set a control (guardrail) parameter of 80%. Configure control (guardrail) notification preferences. Use Amazon Simple Notification Service (Amazon SNS) to notify the finance team.

D.

Configure the member accounts to save a daily AWS Cost and Usage Report to an Amazon S3 bucket in the organization's management account. Use Amazon EventBridge to schedule a daily Amazon Athena query to calculate the organization’s costs. Configure Athena to send an Amazon CloudWatch alert if the total costs are more than 80% of the allocated budget. Use Amazon Simple Notification Service (Amazon SNS) to notify the finance team.

Full Access
Question # 147

A company is deploying a distributed in-memory database on a fleet of Amazon EC2 instances. The fleet consists of a primary node and eight worker nodes. The primary node is responsible for monitoring cluster health, accepting user requests, distributing user requests to worker nodes, and sending an aggregate response back to a client. Worker nodes communicate with each other to replicate data partitions.

The company requires the lowest possible networking latency to achieve maximum performance.

Which solution will meet these requirements?

A.

Launch memory optimized EC2 instances in a partition placement group.

B.

Launch compute optimized EC2 instances in a partition placement group.

C.

Launch memory optimized EC2 instances in a cluster placement group

D.

Launch compute optimized EC2 instances in a spread placement group.

Full Access
Question # 148

A company has set up its entire infrastructure on AWS. The company uses Amazon EC2 instances to host its ecommerce website and uses Amazon S3 to store static data. Three engineers at the company handle the cloud administration and development through one AWS account. Occasionally, an engineer alters an EC2 security group configuration of another engineer and causes noncompliance issues in the environment.

A solutions architect must set up a system that tracks changes that the engineers make. The system must send alerts when the engineers make noncompliant changes to the security settings for the EC2 instances.

What is the FASTEST way for the solutions architect to meet these requirements?

A.

Set up AWS Organizations for the company. Apply SCPs to govern and track noncompliant security group changes that are made to the AWS account.

B.

Enable AWS CloudTrail to capture the changes to EC2 security groups. Enable Amazon CtoudWatch rules to provide alerts when noncompliant security settings are detected.

C.

Enable SCPs on the AWS account to provide alerts when noncompliant security group changes are made to the environment.

D.

Enable AWS Config on the EC2 security groups to track any noncompliant changes Send the changes as alerts through an Amazon Simple Notification Service (Amazon SNS) topic.

Full Access
Question # 149

A company wants to optimize AWS data-transfer costs and compute costs across developer accounts within the company's organization in AWS Organizations Developers can configure VPCs and launch Amazon EC2 instances in a single AWS Region The EC2 instances retrieve approximately 1 TB of data each day from Amazon S3

The developer activity leads to excessive monthly data-transfer charges and NAT gateway processing charges between EC2 instances and S3 buckets, along with high compute costs The company wants to proactively enforce approved architectural patterns for any EC2 instance and VPC infrastructure that developers deploy within the AWS accounts The company does not wantthis enforcement to negatively affect the speed at which the developers can perform their tasks

Which solution will meet these requirements MOST cost-effectively?

A.

Create SCPs to prevent developers from launching unapproved EC2 instance types Provide the developers with an AWS CloudFormation template to deploy an approved VPC configuration with S3 interface endpoints Scope the developers* IAM permissions so that the developers can launch VPC resources only with CloudFormation

B.

Create a daily forecasted budget with AWS Budgets to monitor EC2 compute costs and S3 data-transfer costs across the developer accounts When the forecasted cost is 75% of the actual budget cost, send an alert to the developer teams If the actual budget cost is 100%. create a budget action to terminate the developers' EC2 instances and VPC infrastructure

C.

Create an AWS Service Catalog portfolio that users can use to create an approved VPC configuration with S3 gateway endpoints and approved EC2 instances Share the portfolio with the developer accounts Configure an AWS Service Catalog launch constraint to use an approved IAM role Scope the developers' IAM permissions to allow access only to AWS Service Catalog

D.

Create and deploy AWS Config rules to monitor the compliance of EC2 and VPC resources in the developer AWS accounts If developers launch unapproved EC2 instances or if developers create VPCs without S3 gateway endpoints perform a remediation action to terminate the unapproved resources

Full Access
Question # 150

A company is migrating an application to AWS. It wants to use fully managed services as much as possible during the migration The company needs to store large, important documents within the application with the following requirements

1 The data must be highly durable and available

2. The data must always be encrypted at rest and in transit.

3 The encryption key must be managed by the company and rotated periodically

Which of the following solutions should the solutions architect recommend?

A.

Deploy the storage gateway to AWS in file gateway mode Use Amazon EBS volume encryption using an AWS KMS key to encrypt the storage gateway volumes

B.

Use Amazon S3 with a bucket policy to enforce HTTPS for connections to the bucket and to enforce server-side encryption and AWS KMS for object encryption.

C.

Use Amazon DynamoDB with SSL to connect to DynamoDB Use an AWS KMS key to encrypt DynamoDB objects at rest.

D.

Deploy instances with Amazon EBS volumes attached to store this data Use EBS volume encryption using an AWS KMS key to encrypt the data.

Full Access
Question # 151

A company that uses AWS Organizations allows developers to experiment on AWS. As part of the landing zone that the company has deployed, developers use their company email address to request an account. The company wants to ensure that developers are not launching costly services or running services unnecessarily. The company must give developers a fixed monthly budget to limit their AWS costs.

Which combination of steps will meet these requirements? (Choose three.)

A.

Create an SCP to set a fixed monthly account usage limit. Apply the SCP to the developer accounts.

B.

Use AWS Budgets to create a fixed monthly budget for each developer's account as part of the account creation process.

C.

Create an SCP to deny access to costly services and components. Apply the SCP to the developer accounts.

D.

Create an IAM policy to deny access to costly services and components. Apply the IAM policy to the developer accounts.

E.

Create an AWS Budgets alert action to terminate services when the budgeted amount is reached. Configure the action to terminate all services.

F.

Create an AWS Budgets alert action to send an Amazon Simple Notification Service (Amazon SNS) notification when the budgeted amount is reached. Invoke an AWS Lambda function to terminate all services.

Full Access
Question # 152

A company that provisions job boards for a seasonal workforce is seeing an increase in traffic and usage. The backend services run on a pair of Amazon EC2 instances behind an Application Load Balancer with Amazon DynamoDB as the datastore. Application read and write traffic is slow during peak seasons.

Which option provides a scalable application architecture to handle peak seasons with the LEAST development effort?

A.

Migrate the backend services to AWS Lambda. Increase the read and write capacity of DynamoDB.

B.

Migrate the backend services to AWS Lambda. Configure DynamoDB to use global tables.

C.

Use Auto Scaling groups for the backend services. Use DynamoDB auto scaling.

D.

Use Auto Scaling groups for the backend services. Use Amazon Simple Queue Service (Amazon SQS) and an AWS Lambda function to write to DynamoDB.

Full Access
Question # 153

A company has a few AWS accounts for development and wants to move its production application to AWS. The company needs to enforce Amazon Elastic Block Store (Amazon EBS) encryption at rest current production accounts and future production accounts only. The company needs a solution that includes built-in blueprints and guardrails.

Which combination of steps will meet these requirements? (Choose three.)

A.

Use AWS CloudFormation StackSets to deploy AWS Config rules on production accounts.

B.

Create a new AWS Control Tower landing zone in an existing developer account. Create OUs for accounts. Add production and development accounts to production and development OUs, respectively.

C.

Create a new AWS Control Tower landing zone in the company’s management account. Addproduction and development accounts to production and development OUs. respectively.

D.

Invite existing accounts to join the organization in AWS Organizations. Create SCPs to ensure compliance.

E.

Create a guardrail from the management account to detect EBS encryption.

F.

Create a guardrail for the production OU to detect EBS encryption.

Full Access
Question # 154

A company is deploying a third-party firewall appliance solution from AWS Marketplace to monitor and protect traffic that leaves the company's AWS environments. The company wants to deploy this appliance into a shared services VPC and route all outbound internet-bound traffic through the appliances.

A solutions architect needs to recommend a deployment method that prioritizes reliability and minimizes failover time between firewall appliances within a single AWS Region. The company has set up routing from the shared services VPC to other VPCs.

Which steps should the solutions architect recommend to meet these requirements? (Select THREE.)

A.

Deploy two firewall appliances into the shared services VPC, each in a separate Availability Zone.

B.

Create a new Network Load Balancer in the shared services VPC. Create a new target group, and attach it to the new Network Load Balancer. Add each of the firewall appliance instances to the target group.

C.

Create a new Gateway Load Balancer in the shared services VPC. Create a new target group, and attach it to the new Gateway Load Balancer. Add each of the firewall appliance instances to the target group.

D.

Create a VPC interface endpoint. Add a route to the route table in the shared services VPC. Designate the new endpoint as the next hop for traffic that enters the shared services VPC from other VPCs.

E.

Deploy two firewall appliances into the shared services VPC. each in the same Availability Zone.

F.

Create a VPC Gateway Load Balancer endpoint. Add a route to the route table in the shared services VPC. Designate the new endpoint as the next hop for traffic that enters the shared services VPC from other VPCs.

Full Access
Question # 155

A solutions architect wants to cost-optimize and appropriately size Amazon EC2 instances in a single AWS account. The solutions architect wants to ensure that the instances are optimized based on CPU, memory, and network metrics.

Which combination of steps should the solutions architect take to meet these requirements? (Choose two.)

A.

Purchase AWS Business Support or AWS Enterprise Support for the account.

B.

Turn on AWS Trusted Advisor and review any “Low Utilization Amazon EC2 Instances” recommendations.

C.

Install the Amazon CloudWatch agent and configure memory metric collection on the EC2 instances.

D.

Configure AWS Compute Optimizer in the AWS account to receive findings and optimization recommendations.

E.

Create an EC2 Instance Savings Plan for the AWS Regions, instance families, and operating systems of interest.

Full Access
Question # 156

An online retail company is migrating its legacy on-premises .NET application to AWS. The application runs on load-balanced frontend web servers, load-balanced application servers, and a Microsoft SQL Server database.

The company wants to use AWS managed services where possible and does not want to rewrite the application. A solutions architect needs to implement a solution to resolve scaling issues and minimize licensing costs as the application scales.

Which solution will meet these requirements MOST cost-effectively?

A.

Deploy Amazon EC2 instances in an Auto Scaling group behind an Application Load Balancerfor the web tier and for the application tier. Use Amazon Aurora PostgreSQL with Babelfish turned on to replatform the SOL Server database.

B.

Create images of all the servers by using AWS Database Migration Service (AWS DMS). Deploy Amazon EC2 instances that are based on the on-premises imports. Deploy the instances in an Auto Scaling group behind a Network Load Balancer for the web tier and for the application tier. Use Amazon DynamoDB as the database tier.

C.

Containerize the web frontend tier and the application tier. Provision an Amazon Elastic Kubernetes Service (Amazon EKS) cluster. Create an Auto Scaling group behind a Network Load Balancer for the web tier and for the application tier. Use Amazon RDS for SOL Server to host the database.

D.

Separate the application functions into AWS Lambda functions. Use Amazon API Gateway for the web frontend tier and the application tier. Migrate the data to Amazon S3. Use Amazon Athena to query the data.

Full Access
Question # 157

A company is building a serverless application that runs on an AWS Lambda function that is attached to a VPC. The company needs to integrate the application with a new service from an external provider. The external provider supports only requests that come from public IPv4 addresses that are in an allow list.

The company must provide a single public IP address to the external provider before the application can start using the new service.

Which solution will give the application the ability to access the new service?

A.

Deploy a NAT gateway. Associate an Elastic IP address with the NAT gateway. Configure the VPC to use the NAT gateway.

B.

Deploy an egress-only internet gateway. Associate an Elastic IP address with the egress-only internet gateway. Configure the elastic network interface on the Lambda function to use the egress-only internet gateway.

C.

Deploy an internet gateway. Associate an Elastic IP address with the internet gateway. Configure the Lambda function to use the internet gateway.

D.

Deploy an internet gateway. Associate an Elastic IP address with the internet gateway. Configure the default route in the public VPC route table to use the internet gateway.

Full Access
Question # 158

A company is running a critical stateful web application on two Linux Amazon EC2 instances behind an Application Load Balancer (ALB) with an Amazon RDS for MySQL database The company hosts the DNS records for the application in Amazon Route 53 A solutions architect must recommend a solution to improve the resiliency of the application

The solution must meet the following objectives:

• Application tier RPO of 2 minutes. RTO of 30 minutes

• Database tier RPO of 5 minutes RTO of 30 minutes

The company does not want to make significant changes to the existing application architecture The company must ensure optimal latency after a failover

Which solution will meet these requirements?

A.

Configure the EC2 instances to use AWS Elastic Disaster Recovery Create a cross-Region read replica for the RDS DB instance Create an ALB in a second AWS Region Create an AWS Global Accelerator endpoint and associate the endpoint with the ALBs Update DNS records to point to the Global Accelerator endpoint

B.

Configure the EC2 instances to use Amazon Data Lifecycle Manager (Amazon DLM) to take snapshots of the EBS volumes Configure RDS automated backups Configure backup replication to a second AWS Region Create an ALB in the second Region Create an AWS Global Accelerator endpoint, and associate the endpoint with the ALBs Update DNS records to point to the Global Accelerator endpoint

C.

Create a backup plan in AWS Backup for the EC2 instances and RDS DB instance Configure backup replication to a second AWS Region Create an ALB in the second Region Configure an Amazon CloudFront distribution in front of the ALB Update DNS records to point to CloudFront

D.

Configure the EC2 instances to use Amazon Data Lifecycle Manager (Amazon DLM) to take snapshots of the EBS volumes Create a cross-Region read replica for the RDS DB instance Create an ALB in a second AWS Region Create an AWS Global Accelerator endpoint and associate the endpoint with the ALBs

Full Access
Question # 159

A company has developed a mobile game. The backend for the game runs on several virtual machines located in an on-premises data center. The business logic is exposed using a REST API with multiple functions. Player session data is stored in central file storage. Backend services use different API keys for throttling and to distinguish between live and test traffic.

The load on the game backend varies throughout the day. During peak hours, the server capacity is not sufficient. There are also latency issues when fetching player session data. Management has asked a solutions architect to present a cloud architecture that can handle the game's varying load and provide low-latency data access. The API model should not be changed.

Which solution meets these requirements?

A.

Implement the REST API using a Network Load Balancer (NLB). Run the business logic on an Amazon EC2 instance behind the NLB. Store player session data in Amazon Aurora Serverless.

B.

Implement the REST API using an Application Load Balancer (ALB). Run the business logic in AWS Lambda. Store player session data in Amazon DynamoDB with on-demand capacity.

C.

Implement the REST API using Amazon API Gateway. Run the business logic in AWS Lambda. Store player session data in Amazon DynamoDB with on- demand capacity.

D.

Implement the REST API using AWS AppSync. Run the business logic in AWS Lambda. Store player session data in Amazon Aurora Serverless.

Full Access
Question # 160

A company has a complex web application that leverages Amazon CloudFront for global scalability and performance Over time, users report that the web application is slowing down

The company's operations team reports that the CloudFront cache hit ratio has been dropping steadily. The cache metrics report indicates that query strings on some URLs are inconsistently ordered and are specified sometimes in mixed-case letters and sometimes in lowercase letters.

Which set of actions should the solutions architect take to increase the cache hit ratio as quickly as possible?

A.

Deploy a Lambda@Edge function to sort parameters by name and force them lo be lowercase Select the CloudFront viewer request trigger to invoke the function

B.

Update the CloudFront distribution to disable caching based on query string parameters.

C.

Deploy a reverse proxy after the load balancer to post-process the emitted URLs in the application to force the URL strings to be lowercase.

D.

Update the CloudFront distribution to specify casing-insensitive query string processing.

Full Access
Question # 161

A company is running an application in the AWS Cloud. The application uses AWS Lambda functions and Amazon Elastic Container Service (Amazon ECS) containers that run with AWS Fargate technology as its primary compute. The load on the application is irregular. The application experiences long periods of no usage, followed by sudden and significant increases and decreases in traffic. The application is write-heavy and stores data in an Amazon Aurora MySQL database. The database runs on an Amazon RDS memory optimized DB instance that is not able to handle the load.

What is the MOST cost-effective way for the company to handle the sudden and significant changes in traffic?

A.

Add additional read replicas to the database. Purchase Instance Savings Plans and RDS Reserved Instances.

B.

Migrate the database to an Aurora multi-master DB cluster. Purchase Instance Savings Plans.

C.

Migrate the database to an Aurora global database. Purchase Compute Savings Plans and RDS Reserved Instances.

D.

Migrate the database to Aurora Serverless v1. Purchase Compute Savings Plans.

Full Access
Question # 162

A company has developed a hybrid solution between its data center and AWS. The company uses Amazon VPC and Amazon EC2 instances that send application togs to Amazon CloudWatch. The EC2 instances read data from multiple relational databases that are hosted on premises.

The company wants to monitor which EC2 instances are connected to the databases in near-real time. The company already has a monitoring solution that uses Splunk on premises. A solutions architect needs to determine how to send networking traffic to Splunk.

How should the solutions architect meet these requirements?

A.

Enable VPC flows logs, and send them to CloudWatch. Create an AWS Lambda function to periodically export the CloudWatch logs to an Amazon S3 bucket by using the pre-defined export function. Generate ACCESS_KEY and SECRET_KEY AWS credentials. Configure Splunk to pull the logs from the S3 bucket by using those credentials.

B.

Create an Amazon Kinesis Data Firehose delivery stream with Splunk as the destination. Configure a pre-processing AWS Lambda function with a Kinesis Data Firehose stream processor that extracts individual log events from records sent by CloudWatch Logs subscription filters. Enable VPC flows logs, and send them to CloudWatch. Create a CloudWatch Logs subscription that sends log events to the Kinesis Data Firehose delivery stream.

C.

Ask the company to log every request that is made to the databases along with the EC2 instance IP address. Export the CloudWatch logs to an Amazon S3 bucket. Use Amazon Athena to query the logs grouped by database name. Export Athena results to another S3 bucket. Invoke an AWS Lambda function to automatically send any new file that is put in the S3 bucket to Splunk.

D.

Send the CloudWatch logs to an Amazon Kinesis data stream with Amazon Kinesis Data Analytics for SOL Applications. Configure a 1 -minute sliding window to collect the events. Create a SQL query that uses the anomaly detection template to monitor any networking traffic anomalies in near-real time. Send the result to an Amazon Kinesis Data Firehose delivery stream with Splunk as the destination.

Full Access
Question # 163

Question:

A company is migrating a monolithic on-premises .NET Framework production application to AWS. Application demand will grow exponentially in the next 6 months. The company must ensure that the application can scale appropriately.

The application currently connects to a Microsoft SQL Server transactional database. The company has well-documented source code for the application. Some business logic is contained within stored procedures.

A solutions architect must recommend a solution to redesign the application to meet the growth in demand.

Which solution will meet this requirement MOST cost-effectively?

A.

Use Amazon API Gateway APIs and Amazon EC2 Spot Instances to rehost the application with a scalable microservices architecture. Deploy the EC2 instances in a cluster placement group. Configure EC2 Auto Scaling. Store the data and stored procedures in Amazon RDS for SQL Server.

B.

Use AWS Application Migration Service to migrate the application to AWS Elastic Beanstalk. Deploy Elastic Beanstalk packages to configure and deploy the application as microservices. Deploy Elastic Beanstalk across multiple Availability Zones and configure auto scaling. Store the data and stored procedures in Amazon RDS for MySQL.

C.

Migrate the applications by using AWS App2Container. Use AWS Fargate in multiple AWS Regions to host the containers. Use Amazon API Gateway APIs and AWS Lambda functions to call the containers. Store the data and stored procedures in Amazon DynamoDB Accelerator (DAX).

D.

Use Amazon API Gateway APIs and AWS Lambda functions to decouple the application into microservices. Use the AWS Schema Conversion Tool (AWS SCT) to review and modify the stored procedures. Store the data in Amazon Aurora Serverless v2.

Full Access
Question # 164

An EC2-based ticketing service pulls a frequently updated pricing file (stored in S3) on startup. Sometimes EC2s have stale pricing, causing charge issues.

A.

Lambda updates DynamoDB with new prices.

B.

Lambda updates Amazon EFS.

C.

Use Mountpoint for S3 to mount the pricing file to EC2.

D.

Use Multi-Attach EBS volume for price file.

Full Access
Question # 165

A company plans to deploy a new private intranet service on Amazon EC2 instances inside a VPC. An AWS Site-to-Site VPN connects the VPC to the company's on-premises network. The new service must communicate with existing on-premises services The on-premises services are accessible through the use of hostnames that reside in the company example DNS zone This DNS zone is wholly hosted on premises and is available only on the company's private network.

A solutions architect must ensure that the new service can resolve hostnames on the company example domain to integrate with existing services.

Which solution meets these requirements?

A.

Create an empty private zone in Amazon Route 53 for company example Add an additional NS record to the company's on-premises company example zone that points to the authoritative name servers for the new private zone in Route 53

B.

Turn on DNS hostnames for the VPC Configure a new outbound endpoint with Amazon Route 53 Resolver. Create a Resolver rule to forward requests for company example to the on-premises name servers

C.

Turn on DNS hostnames for the VPC Configure a new inbound resolver endpointwith Amazon Route 53 Resolver. Configure the on-premises DNS server to forward requests for company example to the new resolver.

D.

Use AWS Systems Manager to configure a run document that will install a hosts file that contains any required hostnames. Use an Amazon EventBndge rule to run the document when an instance is entering the running state.

Full Access
Question # 166

A company is using AWS Organizations to manage multiple AWS accounts. For security purposes, the company requires the creation of an Amazon Simple Notification Service (Amazon SNS) topic that enables integration with a third-party alerting system in all the Organizations member accounts.

A solutions architect used an AWS CloudFormation template to create the SNS topic and stack sets to automate the deployment of Cloud Formation stacks. Trustedaccess has been enabled in Organizations.

What should the solutions architect do to deploy the CloudFormation StackSets in all AWS accounts?

A.

Create a stack set in the Organizations member accounts. Use service-managed permissions. Set deployment options to deploy to an organization. Use CloudFormation StackSets drift detection.

B.

Create stacks in the Organizations member accounts. Use self-service permissions. Set deployment options to deploy to an organization. Enable the CloudFormation StackSets automatic deployment.

C.

Create a stack set in the Organizations management account. Use service-managed permissions. Set deployment options to deploy to the organization. Enable CloudFormation StackSets automatic deployment.

D.

Create stacks in the Organizations management account. Use service-managed permissions. Set deployment options to deploy to the organization. Enable CloudFormation StackSets drift detection.

Full Access
Question # 167

An international delivery company hosts a delivery management system on AWS. Drivers use the system to upload confirmation of delivery. Confirmation includes the recipient's signature or a photo of the package with the recipient. The driver's handheld device uploads signatures and photos through FTP to a single Amazon EC2 instance. Each handheld device saves a file in a directory based on the signed-in user, and the file name matches the delivery number. The EC2 instance then adds metadata to the file after querying a central database to pull delivery information. The file is then placed in Amazon S3 for archiving.

As the company expands, drivers report that the system is rejecting connections. The FTP server is having problems because of dropped connections and memory issues. In response to these problems, a system engineer schedules a cron task to reboot the EC2 instance every 30 minutes. The billing team reports that files are not always in the archive and that the central system is not always updated.

A solutions architect needs to design a solution that maximizes scalability to ensure that the archive always receives the files and that systems are always updated. The handheld devices cannot be modified, so the company cannot deploy a new application.

Which solution will meet these requirements?

A.

Create an AMI of the existing EC2 instance. Create an Auto Scaling group of EC2 instances behind an Application Load Balancer. Configure the Auto Scaling group to have a minimum of three instances.

B.

Use AWS Transfer Family to create an FTP server that places the files in Amazon Elastic File System (Amazon EFS). Mount the EFS volume to the existing EC2 instance. Point the EC2 instance to the new path for file processing.

C.

Use AWS Transfer Family to create an FTP server that places the files in Amazon S3. Use an S3 event notification through Amazon Simple Notification Service (Amazon SNS) to invoke an AWS Lambda function. Configure the Lambda function to add the metadata and update the delivery system.

D.

Update the handheld devices to place the files directly in Amazon S3. Use an S3 eventnotification through Amazon Simple Queue Service (Amazon SQS) to invoke an AWS Lambda function. Configure the Lambda function to add the metadata and update the delivery system.

Full Access
Question # 168

A company needs to establish a connection from its on-premises data center to AWS. The company needs to connect all of its VPCs that are located in different AWS Regions with transitive routing capabilities between VPC networks. The company also must reduce network outbound traffic costs, increase bandwidth throughput, and provide a consistent network experience for end users.

Which solution will meet these requirements?

A.

Create an AWS Site-to-Site VPN connection between the on-premises data center and a new central VPC. Create VPC peering connections that initiate from the central VPC to all other VPCs.

B.

Create an AWS Direct Connect connection between the on-premises data center and AWS. Provision a transit VIF, and connect it to a Direct Connect gateway. Connect the Direct Connect gateway to all the other VPCs by using a transit gateway in each Region.

C.

Create an AWS Site-to-Site VPN connection between the on-premises data centerand a new central VPC. Use a transit gateway with dynamic routing. Connect the transit gateway to all other VPCs.

D.

Create an AWS Direct Connect connection between the on-premises data center and AWS Establish an AWS Site-to-Site VPN connection between all VPCs in each Region. Create VPC peering connections that initiate from the central VPC to all other VPCs.

Full Access
Question # 169

A startup company recently migrated a large ecommerce website to AWS The website has experienced a 70% increase in sates Software engineers are using a private GitHub repository to manage code The DevOps team is using Jenkins for builds and unit testing The engineers need to receive notifications for bad builds and zero downtime during deployments The engineers also need to ensure any changes to production are seamless for users and can be rolled back in the event of a major issue

The software engineers have decided to use AWS CodePipeline to manage their build and deployment process

Which solution will meet these requirements'?

A.

Use GitHub websockets to trigger the CodePipeline pipeline Use the Jenkins plugin for AWS CodeBuild to conduct unit testing Send alerts to an Amazon SNS topic for any bad builds Deploy inan in-place all-at-once deployment configuration using AWS CodeDeploy

B.

Use GitHub webhooks to trigger the CodePipelme pipeline Use the Jenkins plugin for AWS CodeBuild to conduct unit testing Send alerts to an Amazon SNS topic for any bad builds Deploy in a blue'green deployment using AWS CodeDeploy

C.

Use GitHub websockets to trigger the CodePipelme pipeline. Use AWS X-Ray for unit testing and static code analysis Send alerts to an Amazon SNS topic for any bad builds Deploy in a blue/green deployment using AWS CodeDeploy.

D.

Use GitHub webhooks to trigger the CodePipeline pipeline Use AWS X-Ray for unit testing and static code analysis Send alerts to an Amazon SNS topic for any bad builds Deploy in an m-place. all-at-once deployment configuration using AWS CodeDeploy

Full Access
Question # 170

A company is refactoring its on-premises order-processing platform in the AWS Cloud. The platform includes a web front end that is hosted on a fleet of VMs RabbitMQ to connect the front end to the backend, and a Kubernetes cluster to run a containerized backend system to process the orders. The company does not want to make any major changes to the application

Which solution will meet these requirements with the LEAST operational overhead?

A.

Create an AMI of the web server VM Create an Amazon EC2 Auto Scaling group that uses the AMI and an Application Load Balancer Set up Amazon MQ to replace the on-premises messaging queue Configure Amazon Elastic Kubernetes Service (Amazon EKS) to host the order-processing backend

B.

Create a custom AWS Lambda runtime to mimic the web server environment Create an Amazon API Gateway API to replace the front-end web servers Set up Amazon MQ to replace the on-premises messaging queue Configure Amazon Elastic Kubernetes Service (Amazon EKS) to host the order-processing backend

C.

Create an AMI of the web server VM Create an Amazon EC2 Auto Scaling group that uses the AMI and an Application Load Balancer Set up Amazon MQ to replace the on-premises messaging queue Install Kubernetes on a fleet of different EC2 instances to host the order-processing backend

D.

Create an AMI of the web server VM Create an Amazon EC2 Auto Scaling group that uses the AMI and an Application Load Balancer Set up an Amazon Simple Queue Service (Amazon SQS) queue to replace the on-premises messaging queue Configure Amazon Elastic Kubernetes Service (Amazon EKS) to host the order-processing backend

Full Access
Question # 171

A company runs a software-as-a-service

Which solution meets these requirements'?

A.

Create an Amazon CloudWatch alarm action that triggers a Lambda function to add an Amazon RDS for MySQL read replica when resource utilization hits a threshold

B.

Migrate the database to Amazon Aurora, and add a read replica Add a database connection pool outside of the Lambda handler function

C.

Migrate the database to Amazon Aurora and add a read replica Use Amazon Route 53 weighted records

D.

Migrate the database to Amazon Aurora and add an Aurora Replica Configure Amazon RDS Proxy to manage database connection pools

Full Access
Question # 172

A mobile gaming company is expanding into the global market. The company's game servers run in the us-east-1 Region. The game's client application uses UDP to communicate with the game servers and needs to be able to connect to a set of static IP addresses.

The company wants its game to be accessible on multiple continents. The company also wants the game to maintain its network performance and global availability.

Which solution meets these requirements?

A.

Provision an Application Load Balancer (ALB) in front of the game servers. Create an Amazon CloudFront distribution that has no geographical restrictions. Set the ALB as the origin. Perform DNS lookups for the cloudfront.net domain name. Use the resulting IP addresses in the game's client application.

B.

Provision game servers in each AWS Region. Provision an Application Load Balancer in front of the game servers. Create an Amazon Route 53 latency-based routing policy for the game's client application to use with DNS lookups.

C.

Provision game servers in each AWS Region. Provision a Network Load Balancer (NLB) in front of the game servers. Create an accelerator in AWS Global Accelerator, and configure endpoint groups in each Region. Associate the NLBs with the corresponding Regional endpoint groups. Point the game client's application to the Global Accelerator endpoints.

D.

Provision game servers in each AWS Region. Provision a Network Load Balancer (NLB) in front of the game servers. Create an Amazon CloudFront distribution that has no geographical restrictions. Set the NLB as the origin. Perform DNS lookups for the cloudfront.net domain name. Use the resulting IP addresses in the game's client application.

Full Access
Question # 173

A company hosts a blog post application on AWS using Amazon API Gateway, Amazon DynamoDB, and AWS Lambda. The application currently does not use

API keys to authorize requests. The API model is as follows:

GET/posts/[postid] to get post details

GET/users[userid] to get user details

GET/comments/[commentid] to get comments details

The company has noticed users are actively discussing topics in the comments section, and the company wants to increase user engagement by marking the comments appears in real time.

Which design should be used to reduce comment latency and improve user experience?

A.

Use edge-optimized API with Amazon CloudFront to cache API responses.

B.

Modify the blog application code to request GET comment[commented] every 10 seconds.

C.

Use AWS AppSync and leverage WebSockets to deliver comments.

D.

Change the concurrency limit of the Lambda functions to lower the API response time.

Full Access
Question # 174

A company is updating an application that customers use to make online orders. The number of attacks on the application by bad actors has increased recently.

The company will host the updated application on an Amazon Elastic Container Service (Amazon ECS) cluster. The company will use Amazon DynamoDB to store application data. A public Application Load Balancer (ALB) will provide end users with access to the application. The company must prevent prevent attacks and ensure business continuity with minimal service interruptions during an ongoing attack.

Which combination of steps will meet these requirements MOST cost-effectively? (Select TWO.)

A.

Create an Amazon CloudFront distribution with the ALB as the origin. Add a custom header and random value on the CloudFront domain. Configure the ALB to conditionally forward traffic if the header and value match.

B.

Deploy the application in two AWS Regions. Configure Amazon Route 53 to route to both Regions with equal weight.

C.

Configure auto scaling for Amazon ECS tasks. Create a DynamoDB Accelerator (DAX) cluster.

D.

Configure Amazon ElastiCache to reduce overhead on DynamoDB.

E.

Deploy an AWS WAF web ACL that includes an appropriate rule group. Associate the web ACL with the Amazon CloudFront distribution.

Full Access