Labour Day Sale - Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: mxmas70

Home > Amazon Web Services > AWS Certified Specialty > ANS-C01

ANS-C01 AWS Certified Advanced Networking- Specialty Question and Answers

Question # 4

A retail company is running its service on AWS. The company’s architecture includes Application Load Balancers (ALBs) in public subnets. The ALB target groups are configured to send traffic to backend Amazon EC2 instances in private subnets. These backend EC2 instances can call externally hosted services over the internet by using a NAT gateway.

The company has noticed in its billing that NAT gateway usage has increased significantly. A network engineer needs to find out the source of this increased usage.

Which options can the network engineer use to investigate the traffic through the NAT gateway? (Choose two.)

A.

Enable VPC flow logs on the NAT gateway's elastic network interface. Publish the logs to a log group in Amazon CloudWatch Logs. Use CloudWatch Logs Insights to query and analyze the logs.

B.

Enable NAT gateway access logs. Publish the logs to a log group in Amazon CloudWatch Logs. Use CloudWatch Logs Insights to query and analyze the logs.

C.

Configure Traffic Mirroring on the NAT gateway's elastic network interface. Send the traffic to an additional EC2 instance. Use tools such as tcpdump and Wireshark to query and analyze the mirrored traffic.

D.

Enable VPC flow logs on the NAT gateway's elastic network interface. Publish the logs to an Amazon S3 bucket. Create a custom table for the S3 bucket in Amazon Athena to describe the log structure. Use Athena to query and analyze the logs.

E.

Enable NAT gateway access logs. Publish the logs to an Amazon S3 bucket. Create a custom table for the S3 bucket in Amazon Athena to describe the log structure. Use Athena to query and analyze the logs.

Full Access
Question # 5

A company hosts an application on Amazon EC2 instances behind an Application Load Balancer (ALB). The company recently experienced a network security breach. A network engineer must collect and analyze logs that include the client IP address, target IP address, target port, and user agent of each user that accesses the application.

What is the MOST operationally efficient solution that meets these requirements?

A.

Configure the ALB to store logs in an Amazon S3 bucket. Download the files from Amazon S3, and use a spreadsheet application to analyze the logs.

B.

Configure the ALB to push logs to Amazon Kinesis Data Streams. Use Amazon Kinesis Data Analytics to analyze the logs.

C.

Configure Amazon Kinesis Data Streams to stream data from the ALB to Amazon OpenSearch Service (Amazon Elasticsearch Service). Use search operations in Amazon OpenSearch Service (Amazon Elasticsearch Service) to analyze the data.

D.

Configure the ALB to store logs in an Amazon S3 bucket. Use Amazon Athena to analyze the logs in Amazon S3.

Full Access
Question # 6

A company is using Amazon Route 53 Resolver DNS Firewall in a VPC to block all domains except domains that are on an approved list. The company is concerned that if DNS Firewall is unresponsive, resources in the VPC might be affected if the network cannot resolve any DNS queries. To maintain application service level agreements, the company needs DNS queries to continue to resolve even if Route 53 Resolver does not receive a response from DNS Firewall.

Which change should a network engineer implement to meet these requirements?

A.

Update the DNS Firewall VPC configuration to disable fail open for the VPC.

B.

Update the DNS Firewall VPC configuration to enable fail open for the VPC.

C.

Create a new DHCP options set with parameter dns_firewall_fail_open=false. Associate the new DHCP options set with the VPC.

D.

Create a new DHCP options set with parameter dns_firewall_fail_open=true. Associate the new DHCP options set with the VPC.

Full Access
Question # 7

A company is running multiple workloads on Amazon EC2 instances in public subnets. In a recent incident, an attacker exploited an application vulnerability on one of the EC2 instances to gain access to the instance. The company fixed the application and launched a replacement EC2 instance that contains the updated application.

The attacker used the compromised application to spread malware over the internet. The company became aware of the compromise through a notification from AWS. The company needs the ability to identify when an application that is deployed on an EC2 instance is spreading malware.

Which solution will meet this requirement with the LEAST operational effort?

A.

Use Amazon GuardDuty to analyze traffic patterns by inspecting DNS requests and VPC flow logs.

B.

Use Amazon GuardDuty to deploy AWS managed decoy systems that are equipped with the most recent malware signatures.

C.

Set up a Gateway Load Balancer. Run an intrusion detection system (IDS) appliance from AWS Marketplace on Amazon EC2 for traffic inspection.

D.

Configure Amazon Inspector to perform deep packet inspection of outgoing traffic.

Full Access
Question # 8

A network engineer must provide additional safeguards to protect encrypted data at Application Load Balancers (ALBs) through the use of a unique random session key.

What should the network engineer do to meet this requirement?

A.

Change the ALB security policy to a policy that supports TLS 1.2 protocol only

B.

Use AWS Key Management Service (AWS KMS) to encrypt session keys

C.

Associate an AWS WAF web ACL with the ALBs. and create a security rule to enforce forward secrecy (FS)

D.

Change the ALB security policy to a policy that supports forward secrecy (FS)

Full Access
Question # 9

A company plans to deploy a two-tier web application to a new VPC in a single AWS Region. The company has configured the VPC with an internet gateway and four subnets. Two of the subnets are public and have default routes that point to the internet gateway. Two of the subnets are private and share a route table that does not have a default route.

The application will run on a set of Amazon EC2 instances that will be deployed behind an external Application Load Balancer. The EC2 instances must not be directly accessible from the internet. The application will use an Amazon S3 bucket in the same Region to store data. The application will invoke S3 GET API operations and S3 PUT API operations from the EC2 instances. A network engineer must design a VPC architecture that minimizes data transfer cost.

Which solution will meet these requirements?

A.

Deploy the EC2 instances in the public subnets. Create an S3 interface endpoint in the VPC. Modify the application configuration to use the S3 endpoint-specific DNS hostname.

B.

Deploy the EC2 instances in the private subnets. Create a NAT gateway in the VPC. Create default routes in the private subnets to the NAT gateway. Connect to Amazon S3 by using the NAT gateway.

C.

Deploy the EC2 instances in the private subnets. Create an S3 gateway endpoint in the VPSpecify die route table of the private subnets during endpoint creation to create routes to Amazon S3.

D.

Deploy the EC2 instances in the private subnets. Create an S3 interface endpoint in the VPC. Modify the application configuration to use the S3 endpoint-specific DNS hostname.

Full Access
Question # 10

A company has a total of 30 VPCs. Three AWS Regions each contain 10 VPCs. The company has attached the VPCs in each Region to a transit gateway in that Region. The company also

has set up inter-Region peering connections between the transit gateways.

The company wants to use AWS Direct Connect to provide access from its on-premises location for only four VPCs across the three Regions. The company has provisioned four Direct

Connect connections at two Direct Connect locations.

Which combination of steps will meet these requirements MOST cost-effectively? (Select THREE.)

A.

Create four virtual private gateways. Attach the virtual private gateways to the four VPCs.

B.

Create a Direct Connect gateway. Associate the four virtual private gateways with the Direct Connect gateway.

C.

Create four transit VIFs on each Direct Connect connection. Associate the transit VIFs with the Direct Connect gateway.

D.

Create four transit VIFs on each Direct Connect connection. Associate the transit VIFs with the four virtual private gateways.

E.

Create four private VIFs on each Direct Connect connection to the Direct Connect gateway.

F.

Create an association between the Direct Connect gateway and the transit gateways.

Full Access
Question # 11

A company has its production VPC (VPC-A) in the eu-west-1 Region in Account 1. VPC-A is attached to a transit gateway (TGW-A) that is connected to an on-premises data center in Dublin, Ireland, by an AWS Direct Connect transit VIF that is configured for an AWS Direct Connect gateway. The company also has a staging VPC (VPC-B) that is attached to another transit gateway (TGW-B) in the eu-west-2 Region in Account 2.

A network engineer must implement connectivity between VPC-B and the on-premises data center in Dublin.

Which solutions will meet these requirements? (Choose two.)

A.

Configure inter-Region VPC peering between VPC-A and VPC-B. Add the required VPC peering routes. Add the VPC-B CIDR block in the allowed prefixes on the Direct Connect gateway association.

B.

Associate TGW-B with the Direct Connect gateway. Advertise the VPC-B CIDR block under the allowed prefixes.

C.

Configure another transit VIF on the Direct Connect connection and associate TGW-B. Advertise the VPC-B CIDR block under the allowed prefixes.

D.

Configure inter-Region transit gateway peering between TGW-A and TGW-B. Add the peering routes in the transit gateway route tables. Add both the VPC-A and the VPC-B CIDR block under the allowed prefix list in the Direct Connect gateway association.

E.

Configure an AWS Site-to-Site VPN connection over the transit VIF to TGW-B as a VPN attachment.

Full Access
Question # 12

A global company runs business applications in the us-east-1 Region inside a VPC. One of the company's regional offices in London uses a virtual private gateway for an AWS Site-to-Site VPN connection tom the VPC. The company has configured a transit gateway and has set up peering between the VPC and other VPCs that various departments in the company use.

Employees at the London office are experiencing latency issues when they connect to the business applications.

What should a network engineer do to reduce this latency?

A.

Create a new Site-to-Site VPN connection. Set the transit gateway as the target gateway. Enable acceleration on the new Site-to-Site VPN connection. Update the VPN device in the London office with the new connection details.

B.

Modify the existing Site-to-Site VPN connection by setting the transit gateway as the target gateway. Enable acceleration on the existing Site-to-Site VPN connection.

C.

Create a new transit gateway in the eu-west-2 (London) Region. Peer the new transit gateway with the existing transit gateway. Modify the existing Site-to-Site VPN connection by setting the new transit gateway as the target gateway.

D.

Create a new AWS Global Accelerator standard accelerator that has an endpoint of the Site-to-Site VPN connection. Update the VPN device in the London office with the new connection details.

Full Access
Question # 13

A company is using a NAT gateway to allow internet connectivity for private subnets in a VPC in the us-west-2 Region. After a security audit, the company needs to remove the NAT gateway.

In the private subnets, the company has resources that use the unified Amazon CloudWatch agent. A network engineer must create a solution to ensure that the unified CloudWatch agent continues to work after the removal of the NAT gateway.

Which combination of steps should the network engineer take to meet these requirements? (Choose three.)

A.

Validate that private DNS is enabled on the VPC by setting the enableDnsHostnames VPC attribute and the enableDnsSupport VPC attribute to true.

B.

Create a new security group with an entry to allow outbound traffic that uses the TCP protocol on port 443 to destination 0.0.0.0/0

C.

Create a new security group with entries to allow inbound traffic that uses the TCP protocol on port 443 from the IP prefixes of the private subnets.

D.

Create the following interface VPC endpoints in the VPC: com.amazonaws.us-west-2.logs and com.amazonaws.us-west-2.monitoring. Associate the new security group with the endpoint network interfaces.

E.

Create the following interface VPC endpoint in the VPC: com.amazonaws.us-west-2.cloudwatch. Associate the new security group with the endpoint network interfaces.

F.

Associate the VPC endpoint or endpoints with route tables that the private subnets use.

Full Access
Question # 14

A company's network engineer is designing an active-passive connection to AWS from two on-premises data centers. The company has set up AWS Direct Connect connections between the on-premises data centers and AWS. From each location, the company is using a transit VIF that connects to a Direct Connect gateway that is associated with a transit gateway.

The network engineer must ensure that traffic from AWS to the data centers is routed first to the primary data center. The traffic should be routed to the failover data center only in the case of an outage.

Which solution will meet these requirements?

A.

Set the BGP community tag for all prefixes from the primary data center to 7224:7100. Set the BGP community tag for all prefixes from the failover data center to 7224:7300

B.

Set the BGP community tag for all prefixes from the primary data center to 7224:7300. Set the BGP community tag for all prefixes from the failover data center to 7224:7100

C.

Set the BGP community tag for all prefixes from the primary data center to 7224:9300. Set the BGP community tag for all prefixes from the failover data center to 7224:9100

D.

Set the BGP community tag for all prefixes from the primary data center to 7224:9100. Set the BGP community tag for all prefixes from the failover data center to 7224:9300

Full Access
Question # 15

A company is deploying a new application on AWS. The application uses dynamic multicasting. The company has five VPCs that are all attached to a transit gateway Amazon EC2 instances in each VPC need to be able to register dynamically to receive a multicast transmission.

How should a network engineer configure the AWS resources to meet these requirements?

A.

Create a static source multicast domain within the transit gateway. Associate the VPCs and applicable subnets with the multicast domain. Register the multicast senders' network interface with the multicast domain. Adjust the network ACLs to allow UDP traffic from the source to all receivers and to allow UDP traffic that is sent to the multicast group address.

B.

Create a static source multicast domain within the transit gateway. Associate the VPCs and applicable subnets with the multicast domain. Register the multicast senders' network interface with the multicast domain. Adjust the network ACLs to allow TCP traffic from the source to all receivers and to allow TCP traffic that is sent to the multicast group address.

C.

Create an Internet Group Management Protocol (IGMP) multicast domain within the transit gateway. Associate the VPCs and applicable subnets with the multicast domain. Register the multicast senders' network interface with the multicast domain. Adjust the network ACLs to allow UDP traffic from the source to all receivers and to allow UDP traffic that is sent to the multicast group address.

D.

Create an Internet Group Management Protocol (IGMP) multicast domain within the transit gateway. Associate the VPCs and applicable subnets with the multicast domain. Register the multicast senders' network interface with the multicast domain. Adjust the network ACLs to allow TCP traffic from the source to all receivers and to allow TCP traffic that is sent to the multicast group address.

Full Access
Question # 16

A network engineer needs to standardize a company's approach to centralizing and managing interface VPC endpoints for private communication with AWS services. The company uses AWS Transit Gateway for inter-VPC connectivity between AWS accounts through a hub-and-spoke model. The company's network services team must manage all Amazon Route 53 zones and interface endpoints within a shared services AWS account. The company wants to use this centralized model to provide AWS resources with access to AWS Key Management Service (AWS KMS) without sending traffic over the public internet.

What should the network engineer do to meet these requirements?

A.

In the shared services account, create an interface endpoint for AWS KMS. Modify the interface endpoint by disabling the private DNS name. Create a private hosted zone in the shared services account with an alias record that points to the interface endpoint. Associate the private hosted zone with the spoke VPCs in each AWS account.

B.

In the shared services account, create an interface endpoint for AWS KMS. Modify the interface endpoint by disabling the private DNS name. Create a private hosted zone in each spoke AWS account with an alias record that points to the interface endpoint. Associate each private hosted zone with the shared services AWS account.

C.

In each spoke AWS account, create an interface endpoint for AWS KMS. Modify each interface endpoint by disabling the private DNS name. Create a private hosted zone in each spoke AWS account with an alias record that points to each interface endpoint. Associate each private hosted zone with the shared services AWS account.

D.

In each spoke AWS account, create an interface endpoint for AWS KMS. Modify each interface endpoint by disabling the private DNS name. Create a private hosted zone in the shared services account with an alias record that points to each interface endpoint. Associate the private hosted zone with the spoke VPCs in each AWS account.

Full Access
Question # 17

A company's VPC has Amazon EC2 instances that are communicating with AWS services over the public internet. The company needs to change the connectivity so that the communication

does not occur over the public intemet.

The company deploys AWS PrivateLink endpoints in the VPC. After the deployment of the PrivateLink endpoints, the EC2 instances can no longer communicate at all with the required AWS

services.

Which combination of steps should a network engineer take to restore communication with the AWS services? (Select TWO.)

A.

In the VPC route table, add a route that has the PrivateLink endpoints as the destination.

B.

Ensure that the enableDnsSupport attribute is set to True for the VPC. Ensure that each VPC endpoint has DNS support enabled.

C.

Ensure that the VPC endpoint policy allows communication.

D.

Create an Amazon Route 53 public hosted zone for all services.

E.

Create an Amazon Route 53 private hosted zone that includes a custom name for each service.

Full Access
Question # 18

An AWS CloudFormation template is being used to create a VPC peering connection between two existing operational VPCs, each belonging to a different AWS account. All necessary components in the ‘Remote’ (receiving) account are already in place.

The template below creates the VPC peering connection in the Originating account. It contains these components:

AWSTemplateFormation Version: 2010-09-09

Parameters:

Originating VCId:

Type: String

RemoteVPCId:

Type: String

RemoteVPCAccountId:

Type: String

Resources:

newVPCPeeringConnection:

Type: ‘AWS::EC2::VPCPeeringConnection’

Properties:

VpcdId: !Ref OriginatingVPCId

PeerVpcId: !Ref RemoteVPCId

PeerOwnerId: !Ref RemoteVPCAccountId

Which additional AWS CloudFormation components are necessary in the Originating account to create an operational cross-account VPC peering connection with AWS CloudFormation? (Select two.)

A.

Resources:NewEC2SecurityGroup:Type: AWS::EC2::SecurityGroup

B.

Resources:NetworkInterfaceToRemoteVPC:Type: “AWS::EC2NetworkInterface”

C.

Resources:newEC2Route:Type: AWS::EC2::Route

D.

Resources:VPCGatewayToRemoteVPC:Type: “AWS::EC2::VPCGatewayAttachment”

E.

Resources:newVPCPeeringConnection:Type: ‘AWS::EC2VPCPeeringConnection’PeerRoleArn: !Ref PeerRoleArn

Full Access
Question # 19

A network engineer is working on a large migration effort from an on-premises data center to an AWS Control Tower based multi-account environment. The environment

has a transit gateway that is deployed to a central network services account. The central network services account has been shared with an organization in AWS

Organizations through AWS Resource Access Manager (AWS RAM).

A shared services account also exists in the environment. The shared services account hosts workloads that need to be shared with the entire organization.

The network engineer needs to create a solution to automate the deployment of common network components across the environment. The solution must provision a

VPC for application workloads to each new and existing member account. The VPCs must be connected to the transit gateway in the central network services account.

Which combination of steps will meet these requirements with the LEAST operational overhead? (Select THREE.)

A.

Deploy an AWS Lambda function to the shared services account. Program the Lambda function to assume a role in the new and existing member accounts

to provision the necessary network infrastructure.

B.

Update the existing accounts with an Account Factory Customization (AFC). Select the same AFC when provisioning new accounts.

C.

Create an AWS CloudFormation template that describes the infrastructure that needs to be created in each account. Upload the template as an AWS

Service Catalog product to the shared services account.

D.

Deploy an Amazon EventBridge rule on a default event bus in the shared services account. Configure the EventBridge rule to react to AWS Control Tower

CreateManagedAccount lifecycle events and to invoke the AWS Lambda function.

E.

Create an AWSControlTowerBlueprintAccess role in the shared services account.

F.

Create an AWSControlTowerBlueprintAccess role in each member account.

Full Access
Question # 20

A company manages resources across VPCs in multiple AWS Regions. The company needs to connect to the resources by using its internal domain name. A network engineer needs to apply the aws.example.com DNS suffix to all resources.

What must the network engineer do to meet this requirement?

A.

Create an Amazon Route 53 private hosted zone for aws.example.com in each Region that has resources. Associate the private hosted zone with that Region's VPC. In the appropriate private hosted zone, create DNS records for the resources in each Region.

B.

Create one Amazon Route 53 private hosted zone for aws.example.com. Configure the private hosted zone to allow zone transfers with every VPC.

C.

Create one Amazon Route 53 private hosted zone for example.com. Create a single resource record for aws.example.com in the private hosted zone. Apply a multivalue answer routing policy to the record. Add all VPC resources as separate values in the routing policy.

D.

Create one Amazon Route 53 private hosted zone for aws.example.com. Associate the private hosted zone with every VPC that has resources. In the private hosted zone, create DNS records for all resources.

Full Access
Question # 21

A company is migrating an existing application to a new AWS account. The company will deploy the application in a single AWS Region by using one VPC and multiple Availability Zones. The application will run on Amazon EC2 instances. Each Availability Zone will have several EC2 instances. The EC2 instances will be deployed in private subnets.

The company's clients will connect to the application by using a web browser with the HTTPS protocol. Inbound connections must be distributed across the Availability Zones and EC2 instances. All connections from the same client session must be connected to the same EC2 instance. The company must provide end-to-end encryption for all connections between the clients and the application by using the application SSL certificate.

Which solution will meet these requirements?

A.

Create a Network Load Balancer. Create a target group. Set the protocol to TCP and the port to 443 for the target group. Turn on session affinity (sticky sessions). Register the EC2 instances as targets. Create a listener. Set the protocol to TCP and the port to 443 for the listener. Deploy SSL certificates to the EC2 instances.

B.

Create an Application Load Balancer. Create a target group. Set the protocol to HTTP and the port to 80 for the target group. Turn on session affinity (sticky sessions) with an application-based cookie policy. Register the EC2 instances as targets. Create an HTTPS listener. Set the default action to forward to the target group. Use AWS Certificate Manager (ACM) to create a certificate for the listener.

C.

Create a Network Load Balancer. Create a target group. Set the protocol to TLS and the port to 443 for the target group. Turn on session affinity (sticky sessions). Register the EC2 instances as targets. Create a listener. Set the protocol to TLS and the port to 443 for the listener. Use AWS Certificate Manager (ACM) to create a certificate for the application.

D.

Create an Application Load Balancer. Create a target group. Set the protocol to HTTPS and the port to 443 for the target group. Turn on session affinity (sticky sessions) with an application-based cookie policy. Register the EC2 instances as targets. Create an HTTP listener. Set the port to 443 for the listener. Set the default action to forward to the target group.

Full Access
Question # 22

A company is deploying third-party firewall appliances for traffic inspection and NAT capabilities in its VPC. The VPC is configured with private subnets and public subnets. The company needs to deploy the firewall appliances behind a load balancer.

Which architecture will meet these requirements MOST cost-effectively?

A.

Deploy a Gateway Load Balancer with the firewall appliances as targets. Configure the firewall appliances with a single network interface in a private subnet. Use a NAT gateway to send the traffic to the internet after inspection.

B.

Deploy a Gateway Load Balancer with the firewall appliances as targets. Configure the firewall appliances with two network interfaces: one network interface in a private subnet and another network interface in a public subnet. Use the NAT functionality on the firewall appliances to send the traffic to the internet after inspection.

C.

Deploy a Network Load Balancer with the firewall appliances as targets. Configure the firewall appliances with a single network interface in a private subnet. Use a NAT gateway to send the traffic to the internet after inspection.

D.

Deploy a Network Load Balancer with the firewall appliances as targets. Configure the firewall appliances with two network interfaces: one network interface in a private subnet and another network interface in a public subnet. Use the NAT functionality on the firewall appliances to send the traffic to the internet after inspection.

Full Access
Question # 23

An IoT company sells hardware sensor modules that periodically send out temperature, humidity, pressure, and location data through the MQTT messaging protocol. The hardware sensor modules send this data to the company's on-premises MQTT brokers that run on Linux servers behind a load balancer. The hardware sensor modules have been hardcoded with public IP addresses to reach the brokers.

The company is growing and is acquiring customers across the world. The existing solution can no longer scale and is introducing additional latency because of the company's global presence. As a result, the company decides to migrate its entire infrastructure from on premises to the AWS Cloud. The company needs to migrate without reconfiguring the hardware sensor modules that are already deployed across the world. The solution also must minimize latency.

The company migrates the MQTT brokers to run on Amazon EC2 instances.

What should the company do next to meet these requirements?

A.

Place the EC2 instances behind a Network Load Balancer (NLB). Configure TCP listeners. Use Bring Your Own IP (BYOIP) from the on-premises network with the NLB.

B.

Place the EC2 instances behind a Network Load Balancer (NLB). Configure TCP listeners. Create an AWS Global Accelerator accelerator in front of the NLUse Bring Your Own IP (BYOIP) from the on-premises network with Global Accelerator.

C.

Place the EC2 instances behind an Application Load Balancer (ALB). Configure TCP listeners. Create an AWS Global Accelerator accelerator in front of the ALB. Use Bring Your Own IP (BYOIP) from the on-premises network with Global Accelerator

D.

Place the EC2 instances behind an Amazon CloudFront distribution. Use Bring Your Own IP (BYOIP) from the on-premises network with CloudFront.

Full Access
Question # 24

A company’s network engineer needs to design a new solution to help troubleshoot and detect network anomalies. The network engineer has configured Traffic Mirroring. However, the mirrored traffic is overwhelming the Amazon EC2 instance that is the traffic mirror target. The EC2 instance hosts tools that the company’s security team uses to analyze the traffic. The network engineer needs to design a highly available solution that can scale to meet the demand of the mirrored traffic.

Which solution will meet these requirements?

A.

Deploy a Network Load Balancer (NLB) as the traffic mirror target. Behind the NLB. deploy a fleet of EC2 instances in an Auto Scaling group. Use Traffic Mirroring as necessary.

B.

Deploy an Application Load Balancer (ALB) as the traffic mirror target. Behind the ALB, deploy a fleet of EC2 instances in an Auto Scaling group. Use Traffic Mirroring only during non-business hours.

C.

Deploy a Gateway Load Balancer (GLB) as the traffic mirror target. Behind the GLB. deploy a fleet of EC2 instances in an Auto Scaling group. Use Traffic Mirroring as necessary.

D.

Deploy an Application Load Balancer (ALB) with an HTTPS listener as the traffic mirror target. Behind the ALB. deploy a fleet of EC2 instances in an Auto Scaling group. Use Traffic Mirroring only during active events or business hours.

Full Access
Question # 25

A company has an AWS Direct Connect connection between its on-premises data center in the United States (US) and workloads in the us-east-1 Region. The connection uses a transit VIF to connect the data center to a transit gateway in us-east-1.

The company is opening a new office in Europe with a new on-premises data center in England. A Direct Connect connection will connect the new data center with some workloads that are running in a single VPC in the eu-west-2 Region. The company needs to connect the US data center and us-east-1 with the Europe data center and eu-west-2. A network engineer must establish full connectivity between the data centers and Regions with the lowest possible latency.

How should the network engineer design the network architecture to meet these requirements?

A.

Connect the VPC in eu-west-2 with the Europe data center by using a Direct Connect gateway and a private VIF. Associate the transit gateway in us-east-1 with the same Direct Connect gateway. Enable SiteLink for the transit VIF and the private VIF.

B.

Connect the VPC in eu-west-2 to a new transit gateway. Connect the Europe data center to the new transit gateway by using a Direct Connect gateway and a new transit VIF. Associate the transit gateway in us-east-1 with the same Direct Connect gateway. Enable SiteLink for both transit VIFs. Peer the two transit gateways.

C.

Connect the VPC in eu-west-2 to a new transit gateway. Connect the Europe data center to the new transit gateway by using a Direct Connect gateway and a new transit VIF. Create a new Direct Connect gateway. Associate the transit gateway in us-east-1 with the new Direct Connect gateway. Enable SiteLink for both transit VIFs. Peer the two transit gateways.

D.

Connect the VPC in eu-west-2 with the Europe data center by using a Direct Connect gateway and a private VIF. Create a new Direct Connect gateway. Associate the transit gateway in us-east-1 with the new Direct Connect gateway. Enable SiteLink for the transit VIF and the private VIF.

Full Access
Question # 26

A company is planning to use Amazon S3 to archive financial data. The data is currently stored in an on-premises data center. The company uses AWS Direct Connect with a Direct Connect gateway and a transit gateway to connect to the on-premises data center. The data cannot be transported over the public internet and must be encrypted in transit.

Which solution will meet these requirements?

A.

Create a Direct Connect public VIF. Set up an IPsec VPN connection over the public VIF to access Amazon S3. Use HTTPS for communication.

B.

Create an IPsec VPN connection over the transit VIF. Create a VPC and attach the VPC to the transit gateway. In the VPC, provision an interface VPC endpoint for Amazon S3. Use HTTPS for communication.

C.

Create a VPC and attach the VPC to the transit gateway. In the VPC, provision an interface VPC endpoint for Amazon S3. Use HTTPS for communication.

D.

Create a Direct Connect public VIF. Set up an IPsec VPN connection over the public VIF to the transit gateway. Create an attachment for Amazon S3. Use HTTPS for communication.

Full Access
Question # 27

A company has multiple AWS accounts. Each account contains one or more VPCs. A new security guideline requires the inspection of all traffic between VPCs.

The company has deployed a transit gateway that provides connectivity between all VPCs. The company also has deployed a shared services VPC with Amazon EC2 instances that include IDS services for stateful inspection. The EC2 instances are deployed across three Availability Zones. The company has set up VPC associations and routing on the transit gateway. The company has migrated a few test VPCs to the new solution for traffic inspection.

Soon after the configuration of routing, the company receives reports of intermittent connections for traffic that crosses Availability Zones.

What should a network engineer do to resolve this issue?

A.

Modify the transit gateway VPC attachment on the shared services VPC by enabling cross-Availability Zone load balancing.

B.

Modify the transit gateway VPC attachment on the shared services VPC by enabling appliance mode support.

C.

Modify the transit gateway by selecting VPN equal-cost multi-path (ECMP) routing support.

D.

Modify the transit gateway by selecting multicast support.

Full Access
Question # 28

A network engineer is designing a hybrid architecture that uses a 1 Gbps AWS Direct Connect connection between the company's data center and two AWS Regions: us-east-1 and eu-west-1. The VPCs in us-east-1 are connected by a transit gateway and need to access several on-premises databases. According to company policy, only one VPC in eu-west-1 can be connected to one on-premises server. The on-premises network segments the traffic between the databases and the server.

How should the network engineer set up the Direct Connect connection to meet these requirements?

A.

Create one hosted connection. Use a transit VIF to connect to the transit gateway in us-east-1. Use a private VIF to connect to the VPC in eu-west-1. Use one Direct. Connect gateway for both VIFs to route from the Direct Connect locations to the corresponding AWS Region along the path that has the lowest latency.

B.

Create one hosted connection. Use a transit VIF to connect to the transit gateway in us-east-1. Use a private VIF to connect to the VPC in eu-west-1. Use two Direct Connect gateways, one for each VIF, to route from the Direct Connect locations to the corresponding AWS Region along the path that has the lowest latency.

C.

Create one dedicated connection. Use a transit VIF to connect to the transit gateway in us-east-1. Use a private VIF to connect to the VPC in eu-west-1. Use one Direct Connect gateway for both VIFs to route from the Direct Connect locations to the corresponding AWS Region along the path that has the lowest latency.

D.

Create one dedicated connection. Use a transit VIF to connect to the transit gateway in us-east-1. Use a private VIF to connect to the VPC in eu-west-1. Use two Direct Connect gateways, one for each VIF, to route from the Direct Connect locations to the corresponding AWS Region along the path that has the lowest latency.

Full Access
Question # 29

A company’s network engineer is designing a hybrid DNS solution for an AWS Cloud workload. Individual teams want to manage their own DNS hostnames for their applications in their development environment. The solution must integrate the application-specific hostnames with the centrally managed DNS hostnames from the on-premises network and must provide bidirectional name resolution. The solution also must minimize management overhead.

Which combination of steps should the network engineer take to meet these requirements? (Choose three.)

A.

Use an Amazon Route 53 Resolver inbound endpoint.

B.

Modify the DHCP options set by setting a custom DNS server value.

C.

Use an Amazon Route 53 Resolver outbound endpoint.

D.

Create DNS proxy servers.

E.

Create Amazon Route 53 private hosted zones.

F.

Set up a zone transfer between Amazon Route 53 and the on-premises DNS.

Full Access
Question # 30

A company has a hybrid cloud environment. The company’s data center is connected to the AWS Cloud by an AWS Direct Connect connection. The AWS environment includes VPCs that are connected together in a hub-and-spoke model by a transit gateway. The AWS environment has a transit VIF with a Direct Connect gateway for on-premises connectivity.

The company has a hybrid DNS model. The company has configured Amazon Route 53 Resolver endpoints in the hub VPC to allow bidirectional DNS traffic flow. The company is running a backend application in one of the VPCs.

The company uses a message-oriented architecture and employs Amazon Simple Queue Service (Amazon SQS) to receive messages from other applications over a private network. A network engineer wants to use an interface VPC endpoint for Amazon SQS for this architecture. Client services must be able to access the endpoint service from on premises and from multiple VPCs within the company's AWS infrastructure.

Which combination of steps should the network engineer take to ensure that the client applications can resolve DNS for the interface endpoint? (Choose three.)

A.

Create the interface endpoint for Amazon SQS with the option for private DNS names turned on.

B.

Create the interface endpoint for Amazon SQS with the option for private DNS names turned off.

C.

Manually create a private hosted zone for sqs.us-east-1.amazonaws.com. Add necessary records that point to the interface endpoint. Associate the private hosted zones with other VPCs.

D.

Use the automatically created private hosted zone for sqs.us-east-1.amazonaws.com with previously created necessary records that point to the interface endpoint. Associate the private hosted zones with other VPCs.

E.

Access the SQS endpoint by using the public DNS name sqs.us-east-1 amazonaws.com in VPCs and on premises.

F.

Access the SQS endpoint by using the private DNS name of the interface endpoint .sqs.us-east-1.vpce.amazonaws.com in VPCs and on premises.

Full Access