Labour Day Sale - Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: mxmas70

Home > Google > Google Cloud Platform > Professional-Cloud-Network-Engineer

Professional-Cloud-Network-Engineer Google Cloud Certified - Professional Cloud Network Engineer Question and Answers

Question # 4

You need to create the network infrastructure to deploy a highly available web application in the us-east1 and us-west1 regions. The application runs on Compute Engine instances, and it does not require the use of a database. You want to follow Google-recommended practices. What should you do?

A.

Create one VPC with one subnet in each region.

Create a regional network load balancer in each region with a static IP address.

Enable Cloud CDN on the load balancers.

Create an A record in Cloud DNS with both IP addresses for the load balancers.

B.

Create one VPC with one subnet in each region.

Create a global load balancer with a static IP address.

Enable Cloud CDN and Google Cloud Armor on the load balancer.

Create an A record using the IP address of the load balancer in Cloud DNS.

C.

Create one VPC in each region, and peer both VPCs.

Create a global load balancer.

Enable Cloud CDN on the load balancer.

Create a CNAME for the load balancer in Cloud DNS.

D.

Create one VPC with one subnet in each region.

Create an HTTP(S) load balancer with a static IP address.

Choose the standard tier for the network.

Enable Cloud CDN on the load balancer.

Create a CNAME record using the load balancer’s IP address in Cloud DNS.

Full Access
Question # 5

Your company is planning a migration to Google Kubernetes Engine. Your application team informed you that they require a minimum of 60 Pods per node and a maximum of 100 Pods per node Which Pod per node CIDR range should you

use?

A.

/24

B.

/25

C.

/26

D.

/28

Full Access
Question # 6

You have the networking configuration shown. In the diagram Two VLAN attachments associated With two Dedicated Interconnect connections terminate on the same Cloud Router (mycloudrouter). The Interconnect connections terminate on two separate on-premises routers. You advertise the same prefixes from the Border Gateway Protocol (BOP) sessions associated with each Of the VLAN attachments.

You notice an asymmetric traffic flow between the two Interconnect connections. Which of the following actions should you take to troubleshoot the asymmetric traffic flow?

A.

From the Google Cloud console, navigate to the Hybrid Connectivity select the Cloud Router, and view BGP sessions.

B.

From the Cloud CLI, run gcloud compute –protect_ID router get—status mycloudrouter —-region REGION and review the results.

C.

From the Google Cloud console, navigate to Cloud Logging to view VPC Flow Logs and review the results

D.

From the Cloud CLI. run gcloud compute routers describe mycloudrouter

--region REGION and review the results

Full Access
Question # 7

You recently deployed Compute Engine instances in regions us-west1 and us-east1 in a Virtual Private Cloud (VPC) with default routing configurations. Your company security policy mandates that virtual machines (VMs) must not have public IP addresses attached to them. You need to allow your instances to fetch updates from the internet while preventing external access. What should you do?

A.

Create a Cloud NAT gateway and Cloud Router in both us-west1 and us-east1.

B.

Create a single global Cloud NAT gateway and global Cloud Router in the VPC.

C.

Change the instances’ network interface external IP address from None to Ephemeral.

D.

Create a firewall rule that allows egress to destination 0.0.0.0/0.

Full Access
Question # 8

You need to give each member of your network operations team least-privilege access to create, modify, and delete Cloud Interconnect VLAN attachments.

What should you do?

A.

Assign each user the editor role.

B.

Assign each user the compute.networkAdmin role.

C.

Give each user the following permissions only: compute.interconnectAttachments.create, compute.interconnectAttachments.get.

D.

Give each user the following permissions only: compute.interconnectAttachments.create, compute.interconnectAttachments.get, compute.routers.create, compute.routers.get, compute.routers.update.

Full Access
Question # 9

You are deploying a global external TCP load balancing solution and want to preserve the source IP address of the original layer 3 payload.

Which type of load balancer should you use?

A.

HTTP(S) load balancer

B.

Network load balancer

C.

Internal load balancer

D.

TCP/SSL proxy load balancer

Full Access
Question # 10

You are designing a new application that has backends internally exposed on port 800. The application will be exposed externally using both IPv4 and IPv6 via TCP on port 700. You want to ensure high availability for this application. What should you do?

A.

Create a network load balancer that used backend services containing one instance group with two instances.

B.

Create a network load balancer that uses a target pool backend with two instances.

C.

Create a TCP proxy that uses a zonal network endpoint group containing one instance.

D.

Create a TCP proxy that uses backend services containing an instance group with two instances.

Full Access
Question # 11

You have a storage bucket that contains two objects. Cloud CDN is enabled on the bucket, and both objects have been successfully cached. Now you want to make sure that one of the two objects will not be cached anymore, and will always be served to the internet directly from the origin.

What should you do?

A.

Ensure that the object you don’t want to be cached anymore is not shared publicly.

B.

Create a new storage bucket, and move the object you don’t want to be checked anymore inside it. Then edit the bucket setting and enable the private attribute.

C.

Add an appropriate lifecycle rule on the storage bucket containing the two objects.

D.

Add a Cache-Control entry with value private to the metadata of the object you don’t want to be cached anymore. Invalidate all the previously cached copies.

Full Access
Question # 12

You want to implement an IPSec tunnel between your on-premises network and a VPC via Cloud VPN. You need to restrict reachability over the tunnel to specific local subnets, and you do not have a device capable of speaking Border Gateway Protocol (BGP).

Which routing option should you choose?

A.

Dynamic routing using Cloud Router

B.

Route-based routing using default traffic selectors

C.

Policy-based routing using a custom local traffic selector

D.

Policy-based routing using the default local traffic selector

Full Access
Question # 13

You have ordered Dedicated Interconnect in the GCP Console and need to give the Letter of Authorization/Connecting Facility Assignment (LOA-CFA) to your cross-connect provider to complete the physical connection.

Which two actions can accomplish this? (Choose two.)

A.

Open a Cloud Support ticket under the Cloud Interconnect category.

B.

Download the LOA-CFA from the Hybrid Connectivity section of the GCP Console.

C.

Run gcloud compute interconnects describe .

D.

Check the email for the account of the NOC contact that you specified during the ordering process.

E.

Contact your cross-connect provider and inform them that Google automatically sent the LOA/CFA to them via email, and to complete the connection.

Full Access
Question # 14

You need to define an address plan for a future new Google Kubernetes Engine (GKE) cluster in your Virtual Private Cloud (VPC). This will be a VPC-native cluster, and the default Pod IP range allocation will be used. You must pre-provision all the needed VPC subnets and their respective IP address ranges before cluster creation. The cluster will initially have a single node, but it will be scaled to a maximum of three nodes if necessary. You want to allocate the minimum number of Pod IP addresses. Which subnet mask should you use for the Pod IP address range?

A.

/21

B.

/22

C.

/23

D.

/25

Full Access
Question # 15

Your company has 10 separate Virtual Private Cloud (VPC) networks, with one VPC per project in a single region in Google Cloud. Your security team requires each VPC network to have private connectivity to the main on-premises location via a Partner Interconnect connection in the same region. To optimize cost and operations, the same connectivity must be shared with all projects. You must ensure that all traffic between different projects, on-premises locations, and the internet can be inspected using the same third-party appliances. What should you do?

A.

Configure the third-party appliances with multiple interfaces and specific Partner Interconnect VLAN attachments per project. Create the relevant routes on the third-party appliances and VPC networks.

B.

Configure the third-party appliances with multiple interfaces, with each interface connected to a separate VPC network. Create separate VPC networks for on- premises and internet connectivity. Create the relevant routes on the third-party appliances and VPC networks.

C.

Consolidate all existing projects’ subnetworks into a single VPC. Create separate VPC networks for on-premises and internet connectivity. Configure the third-party appliances with multiple interfaces, with each interface connected to a separate VPC network. Create the relevant routes on the third-party appliances and VPC networks.

D.

Configure the third-party appliances with multiple interfaces. Create a hub VPC network for all projects, and create separate VPC networks for on-premises and internet connectivity. Create the relevant routes on the third-party appliances and VPC networks. Use VPC Network Peering to connect all projects’ VPC networks to the hub VPC. Export custom routes from the hub VPC and import on all projects’ VPC networks.

Full Access
Question # 16

You have an application hosted on a Compute Engine virtual machine instance that cannot communicate with a resource outside of its subnet. When you review the flow and firewall logs, you do not see any denied traffic listed.

During troubleshooting you find:

• Flow logs are enabled for the VPC subnet, and all firewall rules are set to log.

• The subnetwork logs are not excluded from Stackdriver.

• The instance that is hosting the application can communicate outside the subnet.

• Other instances within the subnet can communicate outside the subnet.

• The external resource initiates communication.

What is the most likely cause of the missing log lines?

A.

The traffic is matching the expected ingress rule.

B.

The traffic is matching the expected egress rule.

C.

The traffic is not matching the expected ingress rule.

D.

The traffic is not matching the expected egress rule.

Full Access
Question # 17

You are configuring an HA VPN connection between your Virtual Private Cloud (VPC) and on-premises network. The VPN gateway is named VPN_GATEWAY_1. You need to restrict VPN tunnels created in the project to only connect to your on-premises VPN public IP address: 203.0.113.1/32. What should you do?

A.

Configure a firewall rule accepting 203.0.113.1/32, and set a target tag equal to VPN_GATEWAY_1.

B.

Configure the Resource Manager constraint constraints/compute.restrictVpnPeerIPs to use an allowList consisting of only the 203.0.113.1/32 address.

C.

Configure a Google Cloud Armor security policy, and create a policy rule to allow 203.0.113.1/32.

D.

Configure an access control list on the peer VPN gateway to deny all traffic except 203.0.113.1/32, and attach it to the primary external interface.

Full Access
Question # 18

You are designing an IP address scheme for new private Google Kubernetes Engine (GKE) clusters, Due to IP address exhaustion of the RFC 1918 address space in your enterprise, you plan to use privately used public IP space for the new dusters. You want to follow Google-recommended practices, What should you do after designing your IP scheme?

A.

Create the minimum usable RFC 1918 primary and secondary subnet IP ranges for the clusters. Re-use the secondary address range for the pods across multiple private GKE clusters.

B.

Create the minimum usable RFC 1918 primary and secondary subnet IP ranges for the clusters Re-use the secondary address range for the services across multiple private GKE clusters.

C.

Create privately used public IP primary and secondary subnet ranges for the clusters. Create a private GKE cluster With the following options selected: --enab1e-ip-a1ias and --enable-private-nodes.

D.

Create privately used public IP primary and secondary subnet ranges for the clusters. Create a private GKE cluster with the following options selected and – siable-default-snat, --enable-ip-alias, and –enable-private-nodes

Full Access
Question # 19

Your company's security team tends to use managed services when possible. You need to build a dashboard to show the number of deny hits that occur against configured firewall rules without increasing operational overhead. What should you do?

A.

Configure Firewall Rules Logging. Use Firewall Insights to display the number of hits.

B.

Configure Firewall Rules Logging. View the logs in Cloud Logging, and create a custom dashboard in Cloud Monitoring to display the number of hits.

C.

Configure a firewall appliance from the Google Cloud Marketplace. Route all traffic through this appliance, and apply the firewall rules at this layer. Use the firewall appliance to display the number of hits.

D.

Configure Packet Mirroring on the VPC. Apply a filter with an IP address list of the Denied Firewall rules. Configure an intrusion detection system (IDS) appliance as the receiver to display the number of hits.

Full Access
Question # 20

Your organization uses a hub-and-spoke architecture with critical Compute Engine instances in your Virtual Private Clouds (VPCs). You are responsible for the design of Cloud DNS in Google Cloud. You need to be able to resolve Cloud DNS private zones from your on-premises data center and enable on-premises name resolution from your hub-and-spoke VPC design. What should you do?

A.

Configure a private DNS zone in the hub VPC, and configure DNS forwarding to the on-premises server.

Configure DNS peering from the spoke VPCs to the hub VPC.

B.

Configure a DNS policy in the hub VPC to allow inbound query forwarding from the spoke VPCs.

Configure the spoke VPCs with a private zone, and set up DNS peering to the hub VPC.

C.

Configure a DNS policy in the spoke VPCs, and configure your on-premises DNS as an alternate DNS server.

Configure the hub VPC with a private zone, and set up DNS peering to each of the spoke VPCs.

D.

Configure a DNS policy in the hub VPC, and configure the on-premises DNS as an alternate DNS server.

Configure the spoke VPCs with a private zone, and set up DNS peering to the hub VPC.

Full Access
Question # 21

You built a web application with several containerized microservices. You want to run those microservices on Cloud Run. You must also ensure that the services are highly available to your customers with low latency. What should you do?

A.

Deploy the Cloud Run services to multiple availability zones. Create a global TCP load balancer. Add the Cloud Run endpoints to its backend service.

B.

Deploy the Cloud Run services to multiple regions. Create serverless network endpoint groups (NEGs) that point to the services. Create a global HTTPS load balancer, and attach the serverless NEGs as backend services of the load balancer.

C.

Deploy the Cloud Run services to multiple availability zones. Create Cloud Endpoints that point to the services. Create a global HTTPS load balancer, and attach the Cloud Endpoints to its backend

D.

Deploy the Cloud Run services to multiple regions. Configure a round-robin A record in Cloud DNS.

Full Access
Question # 22

You want to configure load balancing for an internet-facing, standard voice-over-IP (VOIP) application.

Which type of load balancer should you use?

A.

HTTP(S) load balancer

B.

Network load balancer

C.

Internal TCP/UDP load balancer

D.

TCP/SSL proxy load balancer

Full Access
Question # 23

One instance in your VPC is configured to run with a private IP address only. You want to ensure that even if this instance is deleted, its current private IP address will not be automatically assigned to a different instance.

In the GCP Console, what should you do?

A.

Assign a public IP address to the instance.

B.

Assign a new reserved internal IP address to the instance.

C.

Change the instance’s current internal IP address to static.

D.

Add custom metadata to the instance with key internal-address and value reserved.

Full Access
Question # 24

You are increasing your usage of Cloud VPN between on-premises and GCP, and you want to support more traffic than a single tunnel can handle. You want to increase the available bandwidth using Cloud VPN.

What should you do?

A.

Double the MTU on your on-premises VPN gateway from 1460 bytes to 2920 bytes.

B.

Create two VPN tunnels on the same Cloud VPN gateway that point to the same destination VPN gateway IP address.

C.

Add a second on-premises VPN gateway with a different public IP address. Create a second tunnel on the existing Cloud VPN gateway that forwards the same IP range, but points at the new on-premises gateway IP.

D.

Add a second Cloud VPN gateway in a different region than the existing VPN gateway. Create a new tunnel on the second Cloud VPN gateway that forwards the same IP range, but points to the existing on-premises VPN gateway IP address.

Full Access
Question # 25

You have the networking configuration shown in the diagram. A pair of redundant Dedicated Interconnect connections (int-Igal and int-Iga2) terminate on the same Cloud Router. The Interconnect connections terminate on two separate on-premises routers. You are advertising the same prefixes from the Border Gateway Protocol (BGP) sessions associated with the Dedicated Interconnect connections. You need to configure one connection as Active for both ingress and egress traffic. If the active Interconnect connection fails, you want the passive Interconnect connection to automatically begin routing all traffic Which two actions should you take to meet this requirement? (Choose Two)

A.

Configure the advertised route priority > 10,200 on the active Interconnect connection.

B.

Advertise a lower MED on the passive Interconnect connection from the on-premises router

C.

Configure the advertised route priority as 200 for the BGP session associated with the active Interconnect connection.

D.

Configure the advertised route priority as 200 for the BGP session associated with the passive Interconnect connection.

E.

Advertise a lower MED on the active Interconnect connection from the on-premises router

Full Access
Question # 26

Your organization is deploying a single project for 3 separate departments. Two of these departments require network connectivity between each other, but the third department should remain in isolation. Your design should create separate network administrative domains between these departments. You want to minimize operational overhead.

How should you design the topology?

A.

Create a Shared VPC Host Project and the respective Service Projects for each of the 3 separate departments.

B.

Create 3 separate VPCs, and use Cloud VPN to establish connectivity between the two appropriate VPCs.

C.

Create 3 separate VPCs, and use VPC peering to establish connectivity between the two appropriate VPCs.

D.

Create a single project, and deploy specific firewall rules. Use network tags to isolate access between the departments.

Full Access
Question # 27

Your company's web server administrator is migrating on-premises backend servers for an application to GCP. Libraries and configurations differ significantly across these backend servers. The migration to GCP will be lift-and-shift, and all requests to the servers will be served by a single network load balancer frontend. You want to use a GCP-native solution when possible.

How should you deploy this service in GCP?

A.

Create a managed instance group from one of the images of the on-premises servers, and link this instance group to a target pool behind your load balancer.

B.

Create a target pool, add all backend instances to this target pool, and deploy the target pool behind your load balancer.

C.

Deploy a third-party virtual appliance as frontend to these servers that will accommodate the significant differences between these backend servers.

D.

Use GCP's ECMP capability to load-balance traffic to the backend servers by installing multiple equal-priority static routes to the backend servers.

Full Access
Question # 28

You ate planning to use Terraform to deploy the Google Cloud infrastructure for your company, The design must meet the following requirements

• Each Google Cloud project must represent an Internal project that your team Will work on

• After an Internal project is finished, the infrastructure must be deleted

• Each Internal project must have Its own Google Cloud project owner to manage the Google Cloud resources.

• You have 10—100 projects deployed at a time

While you are writing the Terraform code, you need to ensure that the deployment is simple and the code is reusable With

centralized management What should you do?

A.

Create a Single project and additional VPCs for each internal project

B.

Create a Single Shared VPC and attach each Google Cloud project as a service project

C.

Create a Single project and Single VPC for each internal project

D.

Create a Shared VPC and service project for each internal project

Full Access
Question # 29

Your company offers a popular gaming service. Your instances are deployed with private IP addresses, and external access is granted through a global load balancer. You have recently engaged a traffic-scrubbing service and want to restrict your origin to allow connections only from the traffic-scrubbing service.

What should you do?

A.

Create a Cloud Armor Security Policy that blocks all traffic except for the traffic-scrubbing service.

B.

Create a VPC Firewall rule that blocks all traffic except for the traffic-scrubbing service.

C.

Create a VPC Service Control Perimeter that blocks all traffic except for the traffic-scrubbing service.

D.

Create IPTables firewall rules that block all traffic except for the traffic-scrubbing service.

Full Access
Question # 30

You have several microservices running in a private subnet in an existing Virtual Private Cloud (VPC). You need to create additional serverless services that use Cloud Run and Cloud Functions to access the microservices. The network traffic volume between your serverless services and private microservices is low. However, each serverless service must be able to communicate with any of your microservices. You want to implement a solution that minimizes cost. What should you do?

A.

Deploy your serverless services to the serverless VPC. Peer the serverless service VPC to the existing VPC. Configure firewall rules to allow traffic between the serverless services and your existing microservices.

B.

Create a serverless VPC access connector for each serverless service. Configure the connectors to allow traffic between the serverless services and your existing microservices.

C.

Deploy your serverless services to the existing VPC. Configure firewall rules to allow traffic between the serverless services and your existing microservices.

D.

Create a serverless VPC access connector. Configure the serverless service to use the connector for communication to the microservices.

Full Access
Question # 31

You want to set up two Cloud Routers so that one has an active Border Gateway Protocol (BGP) session, and the other one acts as a standby.

Which BGP attribute should you use on your on-premises router?

A.

AS-Path

B.

Community

C.

Local Preference

D.

Multi-exit Discriminator

Full Access
Question # 32

In your company, two departments with separate GCP projects (code-dev and data-dev) in the same organization need to allow full cross-communication between all of their virtual machines in GCP. Each department has one VPC in its project and wants full control over their network. Neither department intends to recreate its existing computing resources. You want to implement a solution that minimizes cost.

Which two steps should you take? (Choose two.)

A.

Connect both projects using Cloud VPN.

B.

Connect the VPCs in project code-dev and data-dev using VPC Network Peering.

C.

Enable Shared VPC in one project (e. g., code-dev), and make the second project (e. g., data-dev) a service project.

D.

Enable firewall rules to allow all ingress traffic from all subnets of project code-dev to all instances in project data-dev, and vice versa.

E.

Create a route in the code-dev project to the destination prefixes in project data-dev and use nexthop as the default gateway, and vice versa.

Full Access
Question # 33

You need to create a new VPC network that allows instances to have IP addresses in both the 10.1.1.0/24 network and the 172.16.45.0/24 network.

What should you do?

A.

Configure global load balancing to point 172.16.45.0/24 to the correct instance.

B.

Create unique DNS records for each service that sends traffic to the desired IP address.

C.

Configure an alias-IP range of 172.16.45.0/24 on the virtual instances within the VPC subnet of 10.1.1.0/24.

D.

Use VPC peering to allow traffic to route between the 10.1.0.0/24 network and the 172.16.45.0/24 network.

Full Access
Question # 34

Your company has a single Virtual Private Cloud (VPC) network deployed in Google Cloud with access from your on-premises network using Cloud Interconnect. You must configure access only to Google APIs and services that are supported by VPC Service Controls through hybrid connectivity with a service level agreement (SLA) in place. What should you do?

A.

Configure the existing Cloud Routers to advertise the Google API's public virtual IP addresses.

B.

Use Private Google Access for on-premises hosts with restricted.googleapis.com virtual IP addresses.

C.

Configure the existing Cloud Routers to advertise a default route, and use Cloud NAT to translate traffic from your on-premises network.

D.

Add Direct Peering links, and use them for connectivity to Google APIs that use public virtual IP addresses.

Full Access
Question # 35

Your team is developing an application that will be used by consumers all over the world. Currently, the application sits behind a global external application load balancer You need to protect the application from potential application-level attacks. What should you do?

A.

Enable Cloud CDN on the backend service.

B.

Create multiple firewall deny rules to block malicious users, and apply them to the global external application load balancer

C.

Create a Google Cloud Armor security policy with web application firewall rules, and apply the security policy to the backend service.

D.

Create a VPC Service Controls perimeter with the global external application load balancer as the protected service, and apply it to the backend service

Full Access
Question # 36

You are in the process of deploying an internal HTTP(S) load balancer for your web server virtual machine (VM) Instances What two prerequisite tasks must be completed before creating the load balancer?

Choose 2 answers

A.

Choose a region.

B.

Create firewall rules for health checks

C.

Reserve a static IP address for the load balancer

D.

Determine the subnet mask for a proxy-only subnet.

E.

Determine the subnet mask for Serverless VPC Access.

Full Access
Question # 37

You recently deployed your application in Google Cloud. You need to verify your Google Cloud network configuration before deploying your on-premises workloads. You want to confirm that your Google Cloud network configuration allows traffic to flow from your cloud resources to your on- premises network. This validation should also analyze and diagnose potential failure points in your Google Cloud network configurations without sending any data plane test traffic. What should you do?

A.

Use Network Intelligence Center's Connectivity Tests.

B.

Enable Packet Mirroring on your application and send test traffic.

C.

Use Network Intelligence Center's Network Topology visualizations.

D.

Enable VPC Flow Logs and send test traffic.

Full Access
Question # 38

Your organization has a single project that contains multiple Virtual Private Clouds (VPCs). You need to secure API access to your Cloud Storage buckets and BigQuery datasets by allowing API access only from resources in your corporate public networks. What should you do?

A.

Create an access context policy that allows your VPC and corporate public network IP ranges, and then attach the policy to Cloud Storage and BigQuery.

B.

Create a VPC Service Controls perimeter for your project with an access context policy that allows your corporate public network IP ranges.

C.

Create a firewall rule to block API access to Cloud Storage and BigQuery from unauthorized networks.

D.

Create a VPC Service Controls perimeter for each VPC with an access context policy that allows your corporate public network IP ranges.

Full Access
Question # 39

You are using the gcloud command line tool to create a new custom role in a project by coping a predefined role. You receive this error message:

INVALID_ARGUMENT: Permission resourcemanager.projects.list is not valid

What should you do?

A.

Add the resourcemanager.projects.get permission, and try again.

B.

Try again with a different role with a new name but the same permissions.

C.

Remove the resourcemanager.projects.list permission, and try again.

D.

Add the resourcemanager.projects.setIamPolicy permission, and try again.

Full Access
Question # 40

You are designing an IP address scheme for new private Google Kubernetes Engine (GKE) clusters. Due to IP address exhaustion of the RFC 1918 address space In your enterprise, you plan to use privately used public IP space for the new clusters. You want to follow Google-recommended practices. What should you do after designing your IP scheme?

A.

Create the minimum usable RFC 1918 primary and secondary subnet IP ranges for the clusters. Re-use the secondary address range for the pods across multiple private GKE clusters

B.

Create the minimum usable RFC 1918 primary and secondary subnet IP ranges for the clusters Re-use the secondary address range for the services across multiple private GKE clusters

C.

Create privately used public IP primary and secondary subnet ranges for the clusters. Create a private GKE cluster with the following options selected and

D.

Create privately used public IP primary and secondary subnet ranges for the clusters. Create a private GKE cluster With the following options selected --disable-default-snat, —enable-ip-alias, and—enable-private-nodes

Full Access
Question # 41

Your end users are located in close proximity to us-east1 and europe-west1. Their workloads need to communicate with each other. You want to minimize cost and increase network efficiency.

How should you design this topology?

A.

Create 2 VPCs, each with their own regions and individual subnets. Create 2 VPN gateways to establish connectivity between these regions.

B.

Create 2 VPCs, each with their own region and individual subnets. Use external IP addresses on the instances to establish connectivity between these regions.

C.

Create 1 VPC with 2 regional subnets. Create a global load balancer to establish connectivity between the regions.

D.

Create 1 VPC with 2 regional subnets. Deploy workloads in these subnets and have them communicate using private RFC1918 IP addresses.

Full Access
Question # 42

You are designing a new global application using Compute Engine instances that will be exposed by a global HTTP(S) load balancer. You need to secure your application from distributed denial-of-service and application layer (layer 7) attacks. What should you do?

A.

Configure VPC Service Controls and create a secure perimeter. Define fine-grained perimeter controls and enforce that security posture across your Google Cloud services and projects.

B.

Configure a Google Cloud Armor security policy in your project, and attach it to the backend service to secure the application.

C.

Configure VPC firewall rules to protect the Compute Engine instances against distributed denial-of-service attacks.

D.

Configure hierarchical firewall rules for the global HTTP(S) load balancer public IP address at the organization level.

Full Access
Question # 43

Your company runs an enterprise platform on-premises using virtual machines (VMS). Your internet customers have created tens of thousands of DNS domains panting to your public IP addresses allocated to the Vtvls Typically, your customers hard-code your IP addresses In their DNS records You are now planning to migrate the platform to Compute Engine and you want to use Bring your Own IP you want to minimize disruption to the Platform What Should you d0?

A.

Create a VPC and request static external IP addresses from Google Cloud Assagn the IP addresses to the Compute Engine instances. Notify your customers of the new IP addresses so they can update their DNS

B.

Verify ownership of your IP addresses. After the verification, Google Cloud advertises and provisions the IP prefix for you_ Assign the IP addresses to the Compute Engine Instances

C.

Create a VPC With the same IP address range as your on-premises network Asson the IP addresses to the Compute Engine Instances.

D.

Verify ownership of your IP addresses. Use live migration to import the prefix Assign the IP addresses to Compute Engine instances.

Full Access
Question # 44

You have just deployed your infrastructure on Google Cloud. You now need to configure the DNS to meet the following requirements:

Your on-premises resources should resolve your Google Cloud zones.

Your Google Cloud resources should resolve your on-premises zones.

You need the ability to resolve “. internal” zones provisioned by Google Cloud.

What should you do?

A.

Configure an outbound server policy, and set your alternative name server to be your on-premises DNS resolver. Configure your on-premises DNS resolver to forward Google Cloud zone queries to Google's public DNS 8.8.8.8.

B.

Configure both an inbound server policy and outbound DNS forwarding zones with the target as the on-premises DNS resolver. Configure your on-premises DNS resolver to forward Google Cloud zone queries to Google Cloud's DNS resolver.

C.

Configure an outbound DNS server policy, and set your alternative name server to be your on-premises DNS resolver. Configure your on-premises DNS resolver to forward Google Cloud zone queries to Google Cloud's DNS resolver.

D.

Configure Cloud DNS to DNS peer with your on-premises DNS resolver. Configure your on-premises DNS resolver to forward Google Cloud zone queries to Google's public DNS 8.8.8.8.

Full Access
Question # 45

You are the network administrator responsible for hybrid connectivity at your organization. Your developer team wants to use Cloud SQL in the us-west1 region in your Shared VPC. You configured a Dedicated Interconnect connection and a Cloud Router in us-west1, and the connectivity between your Shared VPC and on-premises data center is working as expected. You just created the private services access connection required for Cloud SQL using the reserved IP address range and default settings. However, your developers cannot access the Cloud SQL instance from on-premises. You want to resolve the issue. What should you do?

A.

Modify the VPC Network Peering connection used for Cloud SQL, and enable the import and export of routes.

Create a custom route advertisement in your Cloud Router to advertise the Cloud SQL IP address range.

B.

Change the VPC routing mode to global.

Create a custom route advertisement in your Cloud Router to advertise the Cloud SQL IP address range.

C.

Create an additional Cloud Router in us-west2.

Create a new Border Gateway Protocol (BGP) peering connection to your on-premises data center.

Modify the VPC Network Peering connection used for Cloud SQL, and enable the import and export of routes.

D.

Change the VPC routing mode to global.

Modify the VPC Network Peering connection used for Cloud SQL, and enable the import and export of routes.

Full Access
Question # 46

You want to use Partner Interconnect to connect your on-premises network with your VPC. You already have an Interconnect partner.

What should you first?

A.

Log in to your partner’s portal and request the VLAN attachment there.

B.

Ask your Interconnect partner to provision a physical connection to Google.

C.

Create a Partner Interconnect type VLAN attachment in the GCP Console and retrieve the pairing key.

D.

Run gcloud compute interconnect attachments partner update / -- region --admin-enabled.

Full Access
Question # 47

You want to use Cloud Interconnect to connect your on-premises network to a GCP VPC. You cannot meet Google at one of its point-of-presence (POP) locations, and your on-premises router cannot run a Border Gateway Protocol (BGP) configuration.

Which connectivity model should you use?

A.

Direct Peering

B.

Dedicated Interconnect

C.

Partner Interconnect with a layer 2 partner

D.

Partner Interconnect with a layer 3 partner

Full Access
Question # 48

You are configuring your Google Cloud environment to connect to your on-premises network. Your configuration must be able to reach Cloud Storage APIs and your Google Kubernetes Engine nodes across your private Cloud Interconnect network. You have already configured a Cloud Router with your Interconnect VLAN attachments. You now need to set up the appropriate router advertisement configuration on the Cloud Router. What should you do?

A.

Configure the route advertisement to the default setting.

B.

On the on-premises router, configure a static route for the storage API virtual IP address which points to the Cloud Router's link-local IP address.

C.

Configure the route advertisement to the custom setting, and manually add prefix 199.36.153.8/30 to the list of advertisements. Leave all other options as their default settings.

D.

Configure the route advertisement to the custom setting, and manually add prefix 199.36.153.8/30 to the list of advertisements. Advertise all visible subnets to the Cloud Router.

Full Access
Question # 49

You are designing the network architecture for your organization. Your organization has three developer teams: Web, App, and Database. All of the developer teams require access to Compute Engine instances to perform their critical tasks. You are part of a small network and security team that needs to provide network access to the developers. You need to maintain centralized control over network resources, including subnets, routes, and firewalls. You want to minimize operational overhead. How should you design this topology?

A.

Configure a host project with a Shared VPC. Create service projects for Web, App, and Database.

B.

Configure one VPC for Web, one VPC for App, and one VPC for Database. Configure HA VPN between each VPC.

C.

Configure three Shared VPC host projects, each with a service project: one for Web, one for App, and one for Database.

D.

Configure one VPC for Web, one VPC for App, and one VPC for Database. Use VPC Network Peering to connect all VPCs in a full mesh.

Full Access