A company has a Retrieval Augmented Generation (RAG) application that uses a vector database to store embeddings of documents. The company must migrate the application to AWS and must implement a solution that provides semantic search of text files. The company has already migrated the text repository to an Amazon S3 bucket.
Which solution will meet these requirements?
An ML engineer is using Amazon SageMaker to train a deep learning model that requires distributed training. After some training attempts, the ML engineer observes that the instances are not performing as expected. The ML engineer identifies communication overhead between the training instances.
What should the ML engineer do to MINIMIZE the communication overhead between the instances?
A company plans to use Amazon SageMaker AI to build image classification models. The company has 6 TB of training data stored on Amazon FSx for NetApp ONTAP. The file system is in the same VPC as SageMaker AI.
An ML engineer must make the training data accessible to SageMaker AI training jobs.
Which solution will meet these requirements?
A credit card company has a fraud detection model in production on an Amazon SageMaker endpoint. The company develops a new version of the model. The company needs to assess the new model's performance by using live data and without affecting production end users.
Which solution will meet these requirements?
A financial company receives a high volume of real-time market data streams from an external provider. The streams consist of thousands of JSON records per second.
The company needs a scalable AWS solution to identify anomalous data points with the LEAST operational overhead.
Which solution will meet these requirements?
Case study
An ML engineer is developing a fraud detection model on AWS. The training dataset includes transaction logs, customer profiles, and tables from an on-premises MySQL database. The transaction logs and customer profiles are stored in Amazon S3.
The dataset has a class imbalance that affects the learning of the model's algorithm. Additionally, many of the features have interdependencies. The algorithm is not capturing all the desired underlying patterns in the data.
Which AWS service or feature can aggregate the data from the various data sources?
An ML engineer is using Amazon SageMaker AI to train an ML model. The ML engineer needs to use SageMaker AI automatic model tuning (AMT) features to tune the model hyperparameters over a large parameter space.
The model has 20 categorical hyperparameters and 7 continuous hyperparameters that can be tuned. The ML engineer needs to run the tuning job a maximum of 1,000 times. The ML engineer must ensure that each parameter trial is built based on the performance of the previous trial.
Which solution will meet these requirements?
An ML engineer has developed a binary classification model outside of Amazon SageMaker. The ML engineer needs to make the model accessible to a SageMaker Canvas user for additional tuning.
The model artifacts are stored in an Amazon S3 bucket. The ML engineer and the Canvas user are part of the same SageMaker domain.
Which combination of requirements must be met so that the ML engineer can share the model with the Canvas user? (Choose two.)
A company has a custom extract, transform, and load (ETL) process that runs on premises. The ETL process is written in the R language and runs for an average of 6 hours. The company wants to migrate the process to run on AWS.
Which solution will meet these requirements?
A company has historical data that shows whether customers needed long-term support from company staff. The company needs to develop an ML model to predict whether new customers will require long-term support.
Which modeling approach should the company use to meet this requirement?
A company wants to build an anomaly detection ML model. The model will use large-scale tabular data that is stored in an Amazon S3 bucket. The company does not have expertise in Python, Spark, or other languages for ML.
An ML engineer needs to transform and prepare the data for ML model training.
Which solution will meet these requirements?
An ML engineer needs to deploy ML models to get inferences from large datasets in an asynchronous manner. The ML engineer also needs to implement scheduled monitoring of the data quality of the models. The ML engineer must receive alerts when changes in data quality occur.
Which solution will meet these requirements?
A company is planning to create several ML prediction models. The training data is stored in Amazon S3. The entire dataset is more than 5 ТВ in size and consists of CSV, JSON, Apache Parquet, and simple text files.
The data must be processed in several consecutive steps. The steps include complex manipulations that can take hours to finish running. Some of the processing involves natural language processing (NLP) transformations. The entire process must be automated.
Which solution will meet these requirements?
A company is running ML models on premises by using custom Python scripts and proprietary datasets. The company is using PyTorch. The model building requires unique domain knowledge. The company needs to move the models to AWS.
Which solution will meet these requirements with the LEAST effort?
A company has an application that uses different APIs to generate embeddings for input text. The company needs to implement a solution to automatically rotate the API tokens every 3 months.
Which solution will meet this requirement?
A company is using an AWS Lambda function to monitor the metrics from an ML model. An ML engineer needs to implement a solution to send an email message when the metrics breach a threshold.
Which solution will meet this requirement?
An ML engineer is setting up a continuous integration and continuous delivery (CI/CD) pipeline for an ML workflow in Amazon SageMaker AI. The pipeline needs to automate model re-training, testing, and deployment whenever new data is uploaded to an Amazon S3 bucket. New data files are approximately 10 GB in size. The ML engineer wants to track model versions for auditing.
Which solution will meet these requirements?
A company has multiple models that are hosted on Amazon SageMaker Al. The models need to be re-trained. The requirements for each model are different, so the company needs to choose different deployment strategies to transfer all requests to a new model.
Select the correct strategy from the following list for each requirement. Select each strategy one time. (Select THREE.)
. Canary traffic shifting
. Linear traffic shifting guardrail
. All at once traffic shifting
A company has an ML model that is deployed to an Amazon SageMaker AI endpoint for real-time inference. The company needs to deploy a new model. The company must compare the new model’s performance to the currently deployed model's performance before shifting all traffic to the new model.
Which solution will meet these requirements with the LEAST operational effort?
A company uses a hybrid cloud environment. A model that is deployed on premises uses data in Amazon 53 to provide customers with a live conversational engine.
The model is using sensitive data. An ML engineer needs to implement a solution to identify and remove the sensitive data.
Which solution will meet these requirements with the LEAST operational overhead?
A company wants to share data with a vendor in real time to improve the performance of the vendor's ML models. The vendor needs to ingest the data in a stream. The vendor will use only some of the columns from the streamed data.
Which solution will meet these requirements?
An ML engineer wants to run a training job on Amazon SageMaker AI by using multiple GPUs. The training dataset is stored in Apache Parquet format.
The Parquet files are too large to fit into the memory of the SageMaker AI training instances.
Which solution will fix the memory problem?
A company has implemented a data ingestion pipeline for sales transactions from its ecommerce website. The company uses Amazon Data Firehose to ingest data into Amazon OpenSearch Service. The buffer interval of the Firehose stream is set for 60 seconds. An OpenSearch linear model generates real-time sales forecasts based on the data and presents the data in an OpenSearch dashboard.
The company needs to optimize the data ingestion pipeline to support sub-second latency for the real-time dashboard.
Which change to the architecture will meet these requirements?
An ML engineer decides to use Amazon SageMaker AI automated model tuning (AMT) for hyperparameter optimization (HPO). The ML engineer requires a tuning strategy that uses regression to slowly and sequentially select the next set of hyperparameters based on previous runs. The strategy must work across small hyperparameter ranges.
Which solution will meet these requirements?
A healthcare analytics company wants to segment patients into groups that have similar risk factors to develop personalized treatment plans. The company has a dataset that includes patient health records, medication history, and lifestyle changes. The company must identify the appropriate algorithm to determine the number of groups by using hyperparameters.
Which solution will meet these requirements?
An ML engineer must choose the appropriate Amazon SageMaker algorithm to solve specific AI problems.
Select the correct SageMaker built-in algorithm from the following list for each use case. Each algorithm should be selected one time.
• Random Cut Forest (RCF) algorithm
• Semantic segmentation algorithm
• Sequence-to-Sequence (seq2seq) algorithm
An ML engineer at a credit card company built and deployed an ML model by using Amazon SageMaker AI. The model was trained on transaction data that contained very few fraudulent transactions. After deployment, the model is underperforming.
What should the ML engineer do to improve the model’s performance?
An ML engineer is tuning an image classification model that performs poorly on one of two classes. The poorly performing class represents an extremely small fraction of the training dataset.
Which solution will improve the model’s performance?
An advertising company uses AWS Lake Formation to manage a data lake. The data lake contains structured data and unstructured data. The company's ML engineers are assigned to specific advertisement campaigns.
The ML engineers must interact with the data through Amazon Athena and by browsing the data directly in an Amazon S3 bucket. The ML engineers must have access to only the resources that are specific to their assigned advertisement campaigns.
Which solution will meet these requirements in the MOST operationally efficient way?
An ML engineer normalized training data by using min-max normalization in AWS Glue DataBrew. The ML engineer must normalize production inference data in the same way before passing the data to the model.
Which solution will meet this requirement?
A company is building a near real-time data analytics application to detect anomalies and failures for industrial equipment. The company has thousands of IoT sensors that send data every 60 seconds. When new versions of the application are released, the company wants to ensure that application code bugs do not prevent the application from running.
Which solution will meet these requirements?
An ML engineer develops a neural network model to predict whether customers will continue to subscribe to a service. The model performs well on training data. However, the accuracy of the model decreases significantly on evaluation data.
The ML engineer must resolve the model performance issue.
Which solution will meet this requirement?
A company has developed a new ML model. The company requires online model validation on 10% of the traffic before the company fully releases the model in production. The company uses an Amazon SageMaker endpoint behind an Application Load Balancer (ALB) to serve the model.
Which solution will set up the required online validation with the LEAST operational overhead?
A company has deployed an XGBoost prediction model in production to predict if a customer is likely to cancel a subscription. The company uses Amazon SageMaker Model Monitor to detect deviations in the F1 score.
During a baseline analysis of model quality, the company recorded a threshold for the F1 score. After several months of no change, the model's F1 score decreases significantly.
What could be the reason for the reduced F1 score?
A company is using Amazon SageMaker AI to build an ML model to predict customer behavior. The company needs to explain the bias in the model to an auditor. The explanation must focus on demographic data of the customers.
Which solution will meet these requirements?
A company uses an ML model to recommend videos to users. The model is deployed on Amazon SageMaker AI. The model performed well initially after deployment, but the model's performance has degraded over time.
Which solution can the company use to identify model drift in the future?
A company is planning to use Amazon Redshift ML in its primary AWS account. The source data is in an Amazon S3 bucket in a secondary account.
An ML engineer needs to set up an ML pipeline in the primary account to access the S3 bucket in the secondary account. The solution must not require public IPv4 addresses.
Which solution will meet these requirements?
An ML engineer is evaluating several ML models and must choose one model to use in production. The cost of false negative predictions by the models is much higher than the cost of false positive predictions.
Which metric finding should the ML engineer prioritize the MOST when choosing the model?
An ML engineer is training an ML model to identify medical patients for disease screening. The tabular dataset for training contains 50,000 patient records: 1,000 with the disease and 49,000 without the disease.
The ML engineer splits the dataset into a training dataset, a validation dataset, and a test dataset.
What should the ML engineer do to transform the data and make the data suitable for training?
A company uses AWS CodePipeline to orchestrate a continuous integration and continuous delivery (CI/CD) pipeline for ML models and applications.
Select and order the steps from the following list to describe a CI/CD process for a successful deployment. Select each step one time. (Select and order FIVE.)
. CodePipeline deploys ML models and applications to production.
· CodePipeline detects code changes and starts to build automatically.
. Human approval is provided after testing is successful.
. The company builds and deploys ML models and applications to staging servers for testing.
. The company commits code changes or new training datasets to a Git repository.
An ML engineer has trained a neural network by using stochastic gradient descent (SGD). The neural network performs poorly on the test set. The values for training loss and validation loss remain high and show an oscillating pattern. The values decrease for a few epochs and then increase for a few epochs before repeating the same cycle.
What should the ML engineer do to improve the training process?
A company has deployed a model to predict the churn rate for its games by using Amazon SageMaker Studio. After the model is deployed, the company must monitor the model performance for data drift and inspect the report. Select and order the correct steps from the following list to model monitor actions. Select each step one time. (Select and order THREE.) .
Check the analysis results on the SageMaker Studio console. .
Create a Shapley Additive Explanations (SHAP) baseline for the model by using Amazon SageMaker Clarify.
Schedule an hourly model explainability monitor.
An ML engineer needs to organize a large set of text documents into topics. The ML engineer will not know what the topics are in advance. The ML engineer wants to use built-in algorithms or pre-trained models available through Amazon SageMaker AI to process the documents.
Which solution will meet these requirements?
A company is developing an application that reads animal descriptions from user prompts and generates images based on the information in the prompts. The application reads a message from an Amazon Simple Queue Service (Amazon SQS) queue. Then the application uses Amazon Titan Image Generator on Amazon Bedrock to generate an image based on the information in the message. Finally, the application removes the message from SQS queue.
Which IAM permissions should the company assign to the application's IAM role? (Select TWO.)
A company uses Amazon SageMaker for its ML workloads. The company's ML engineer receives a 50 MB Apache Parquet data file to build a fraud detection model. The file includes several correlated columns that are not required.
What should the ML engineer do to drop the unnecessary columns in the file with the LEAST effort?
An ML engineer needs to use an ML model to predict the price of apartments in a specific location.
Which metric should the ML engineer use to evaluate the model's performance?
A company is uploading thousands of PDF policy documents into Amazon S3 and Amazon Bedrock Knowledge Bases. Each document contains structured sections. Users often search for a small section but need the full section context. The company wants accurate section-level search with automatic context retrieval and minimal custom coding.
Which chunking strategy meets these requirements?
A company needs to ingest data from data sources into Amazon SageMaker Data Wrangler. The data sources are Amazon S3, Amazon Redshift, and Snowflake. The ingested data must always be up to date with the latest changes in the source systems.
Which solution will meet these requirements?
A company uses a training job on Amazon SageMaker Al to train a neural network. The job first trains a model and then evaluates the model's performance ag
test dataset. The company uses the results from the evaluation phase to decide if the trained model will go to production.
The training phase takes too long. The company needs solutions that can shorten training time without decreasing the model's final performance.
Select the correct solutions from the following list to meet the requirements for each description. Select each solution one time or not at all. (Select THREE.)
. Change the epoch count.
. Choose an Amazon EC2 Spot Fleet.
· Change the batch size.
. Use early stopping on the training job.
· Use the SageMaker Al distributed data parallelism (SMDDP) library.
. Stop the training job.
A company is developing ML models by using PyTorch and TensorFlow estimators with Amazon SageMaker AI. An ML engineer configures the SageMaker AI estimator and now needs to initiate a training job that uses a training dataset.
Which SageMaker AI SDK method can initiate the training job?
An ML engineer is building a model to predict house and apartment prices. The model uses three features: Square Meters, Price, and Age of Building. The dataset has 10,000 data rows. The data includes data points for one large mansion and one extremely small apartment.
The ML engineer must perform preprocessing on the dataset to ensure that the model produces accurate predictions for the typical house or apartment.
Which solution will meet these requirements?
A company is creating an ML model to identify defects in a product. The company has gathered a dataset and has stored the dataset in TIFF format in Amazon S3. The dataset contains 200 images in which the most common defects are visible. The dataset also contains 1,800 images in which there is no defect visible.
An ML engineer trains the model and notices poor performance in some classes. The ML engineer identifies a class imbalance problem in the dataset.
What should the ML engineer do to solve this problem?
A travel company has trained hundreds of geographic data models to answer customer questions by using Amazon SageMaker AI. Each model uses its own inferencing endpoint, which has become an operational challenge for the company.
The company wants to consolidate the models' inferencing endpoints to reduce operational overhead.
Which solution will meet these requirements?
An ML engineer needs to implement a solution to host a trained ML model. The rate of requests to the model will be inconsistent throughout the day.
The ML engineer needs a scalable solution that minimizes costs when the model is not in use. The solution also must maintain the model's capacity to respond to requests during times of peak usage.
Which solution will meet these requirements?
A company has AWS Glue data processing jobs that are orchestrated by an AWS Glue workflow. The AWS Glue jobs can run on a schedule or can be launched manually.
The company is developing pipelines in Amazon SageMaker Pipelines for ML model development. The pipelines will use the output of the AWS Glue jobs during the data processing phase of model development. An ML engineer needs to implement a solution that integrates the AWS Glue jobs with the pipelines.
Which solution will meet these requirements with the LEAST operational overhead?
An ML engineer has a custom container that performs k-fold cross-validation and logs an average F1 score during training. The ML engineer wants Amazon SageMaker AI Automatic Model Tuning (AMT) to select hyperparameters that maximize the average F1 score.
How should the ML engineer integrate the custom metric into SageMaker AI AMT?
An ML engineer is designing an AI-powered traffic management system. The system must use near real-time inference to predict congestion and prevent collisions.
The system must also use batch processing to perform historical analysis of predictions over several hours to improve the model. The inference endpoints must scale automatically to meet demand.
Which combination of solutions will meet these requirements? (Select TWO.)
An ML engineer needs to use data with Amazon SageMaker Canvas to train an ML model. The data is stored in Amazon S3 and is complex in structure. The ML engineer must use a file format that minimizes processing time for the data.
Which file format will meet these requirements?
A company is using Amazon SageMaker to create ML models. The company's data scientists need fine-grained control of the ML workflows that they orchestrate. The data scientists also need the ability to visualize SageMaker jobs and workflows as a directed acyclic graph (DAG). The data scientists must keep a running history of model discovery experiments and must establish model governance for auditing and compliance verifications.
Which solution will meet these requirements?