Black Friday Sale Special - Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: mxmas70

Home > Amazon Web Services > AWS Certified Data Engineer > Data-Engineer-Associate

Data-Engineer-Associate AWS Certified Data Engineer - Associate (DEA-C01) Question and Answers

Question # 4

A company needs to automate data workflows from multiple data sources to run both on schedules and in response to events from Amazon EventBridge. The data sources are Amazon RDS and Amazon S3. The company needs a single data pipeline that can be invoked both by scheduled events and near real-time EventBridge events.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Create an AWS Glue workflow. Use EventBridge to integrate the events and schedules.

B.

Create an Amazon Managed Workflow for Apache Airflow (Amazon MWAA) workflow that uses a directed acyclic graph (DAG). Use EventBridge to integrate the events and schedules.

C.

Create an AWS Step Functions state machine. Integrate the state machine with AWS Glue ETL jobs and EventBridge to orchestrate the pipeline based on events and schedules.

D.

Create Amazon EMR Serverless jobs that are invoked by AWS Lambda functions. Use EventBridge events and schedules to orchestrate the EMR jobs.

Full Access
Question # 5

A company has a gaming application that stores data in Amazon DynamoDB tables. A data engineer needs to ingest the game data into an Amazon OpenSearch Service cluster. Data updates must occur in near real time.

Which solution will meet these requirements?

A.

Use AWS Step Functions to periodically export data from the Amazon DynamoDB tables to an Amazon S3 bucket. Use an AWS Lambda function to load the data into Amazon OpenSearch Service.

B.

Configure an AW5 Glue job to have a source of Amazon DynamoDB and a destination of Amazon OpenSearch Service to transfer data in near real time.

C.

Use Amazon DynamoDB Streams to capture table changes. Use an AWS Lambda function to process and update the data in Amazon OpenSearch Service.

D.

Use a custom OpenSearch plugin to sync data from the Amazon DynamoDB tables.

Full Access
Question # 6

A company wants to migrate an application and an on-premises Apache Kafka server to AWS. The application processes incremental updates that an on-premises Oracle database sends to the Kafka server. The company wants to use the replatform migration strategy instead of the refactor strategy.

Which solution will meet these requirements with the LEAST management overhead?

A.

Amazon Kinesis Data Streams

B.

Amazon Managed Streaming for Apache Kafka (Amazon MSK) provisioned cluster

C.

Amazon Data Firehose

D.

Amazon Managed Streaming for Apache Kafka (Amazon MSK) Serverless

Full Access
Question # 7

A healthcare company stores patient records in an on-premises MySQL database. The company creates an application to access the MySQL database. The company must enforce security protocols to protect the patient records. The company currently rotates database credentials every 30 days to minimize the risk of unauthorized access.

The company wants a solution that does not require the company to modify the application code for each credential rotation.

Which solution will meet this requirement with the least operational overhead?

A.

Assign an IAM role access permissions to the database. Configure the application to obtain temporary credentials through the IAM role.

B.

Use AWS Key Management Service (AWS KMS) to generate encryption keys. Configure automatic key rotation. Store the encrypted credentials in an Amazon DynamoDB table.

C.

Use AWS Secrets Manager to automatically rotate credentials. Allow the application to retrieve the credentials by using API calls.

D.

Store credentials in an encrypted Amazon S3 bucket. Rotate the credentials every month by using an S3 Lifecycle policy. Use bucket policies to control access.

Full Access
Question # 8

A company currently stores all of its data in Amazon S3 by using the S3 Standard storage class.

A data engineer examined data access patterns to identify trends. During the first 6 months, most data files are accessed several times each day. Between 6 months and 2 years, most data files are accessed once or twice each month. After 2 years, data files are accessed only once or twice each year.

The data engineer needs to use an S3 Lifecycle policy to develop new data storage rules. The new storage solution must continue to provide high availability.

Which solution will meet these requirements in the MOST cost-effective way?

A.

Transition objects to S3 One Zone-Infrequent Access (S3 One Zone-IA) after 6 months. Transfer objects to S3 Glacier Flexible Retrieval after 2 years.

B.

Transition objects to S3 Standard-Infrequent Access (S3 Standard-IA) after 6 months. Transfer objects to S3 Glacier Flexible Retrieval after 2 years.

C.

Transition objects to S3 Standard-Infrequent Access (S3 Standard-IA) after 6 months. Transfer objects to S3 Glacier Deep Archive after 2 years.

D.

Transition objects to S3 One Zone-Infrequent Access (S3 One Zone-IA) after 6 months. Transfer objects to S3 Glacier Deep Archive after 2 years.

Full Access
Question # 9

Two developers are working on separate application releases. The developers have created feature branches named Branch A and Branch B by using a GitHub repository's master branch as the source.

The developer for Branch A deployed code to the production system. The code for Branch B will merge into a master branch in the following week's scheduled application release.

Which command should the developer for Branch B run before the developer raises a pull request to the master branch?

A.

git diff branchB mastergit commit -m

B.

git pull master

C.

git rebase master

D.

git fetch -b master

Full Access
Question # 10

A company loads transaction data for each day into Amazon Redshift tables at the end of each day. The company wants to have the ability to track which tables have been loaded and which tables still need to be loaded.

A data engineer wants to store the load statuses of Redshift tables in an Amazon DynamoDB table. The data engineer creates an AWS Lambda function to publish the details of the load statuses to DynamoDB.

How should the data engineer invoke the Lambda function to write load statuses to the DynamoDB table?

A.

Use a second Lambda function to invoke the first Lambda function based on Amazon CloudWatch events.

B.

Use the Amazon Redshift Data API to publish an event to Amazon EventBridqe. Configure an EventBridge rule to invoke the Lambda function.

C.

Use the Amazon Redshift Data API to publish a message to an Amazon Simple Queue Service (Amazon SQS) queue. Configure the SQS queue to invoke the Lambda function.

D.

Use a second Lambda function to invoke the first Lambda function based on AWS CloudTrail events.

Full Access
Question # 11

An airline company is collecting metrics about flight activities for analytics. The company is conducting a proof of concept (POC) test to show how analytics can provide insights that the company can use to increase on-time departures.

The POC test uses objects in Amazon S3 that contain the metrics in .csv format. The POC test uses Amazon Athena to query the data. The data is partitioned in the S3 bucket by date.

As the amount of data increases, the company wants to optimize the storage solution to improve query performance.

Which combination of solutions will meet these requirements? (Choose two.)

A.

Add a randomized string to the beginning of the keys in Amazon S3 to get more throughput across partitions.

B.

Use an S3 bucket that is in the same account that uses Athena to query the data.

C.

Use an S3 bucket that is in the same AWS Region where the company runs Athena queries.

D.

Preprocess the .csv data to JSON format by fetching only the document keys that the query requires.

E.

Preprocess the .csv data to Apache Parquet format by fetching only the data blocks that are needed for predicates.

Full Access
Question # 12

A company uses Amazon Redshift as its data warehouse. Data encoding is applied to the existing tables of the data warehouse. A data engineer discovers that the compression encoding applied to some of the tables is not the best fit for the data.

The data engineer needs to improve the data encoding for the tables that have sub-optimal encoding.

Which solution will meet this requirement?

A.

Run the ANALYZE command against the identified tables. Manually update the compression encoding of columns based on the output of the command.

B.

Run the ANALYZE COMPRESSION command against the identified tables. Manually update the compression encoding of columns based on the output of the command.

C.

Run the VACUUM REINDEX command against the identified tables.

D.

Run the VACUUM RECLUSTER command against the identified tables.

Full Access
Question # 13

A data engineer notices slow query performance on a highly partitioned table that is in Amazon Athena. The table contains daily data for the previous 5 years, partitioned by date. The data engineer wants to improve query performance and to automate partition management. Which solution will meet these requirements?

A.

Use an AWS Lambda function that runs daily. Configure the function to manually create new partitions in AW5 Glue for each day's data.

B.

Use partition projection in Athena. Configure the table properties by using a date range from 5 years ago to the present.

C.

Reduce the number of partitions by changing the partitioning schema from dairy to monthly granularity.

D.

Increase the processing capacity of Athena queries by allocating more compute resources.

Full Access
Question # 14

A company uses Amazon RDS to store transactional data. The company runs an RDS DB instance in a private subnet. A developer wrote an AWS Lambda function with default settings to insert, update, or delete data in the DB instance.

The developer needs to give the Lambda function the ability to connect to the DB instance privately without using the public internet.

Which combination of steps will meet this requirement with the LEAST operational overhead? (Choose two.)

A.

Turn on the public access setting for the DB instance.

B.

Update the security group of the DB instance to allow only Lambda function invocations on the database port.

C.

Configure the Lambda function to run in the same subnet that the DB instance uses.

D.

Attach the same security group to the Lambda function and the DB instance. Include a self-referencing rule that allows access through the database port.

E.

Update the network ACL of the private subnet to include a self-referencing rule that allows access through the database port.

Full Access
Question # 15

A company uses Amazon S3 as a data lake. The company sets up a data warehouse by using a multi-node Amazon Redshift cluster. The company organizes the data files in the data lake based on the data source of each data file.

The company loads all the data files into one table in the Redshift cluster by using a separate COPY command for each data file location. This approach takes a long time to load all the data files into the table. The company must increase the speed of the data ingestion. The company does not want to increase the cost of the process.

Which solution will meet these requirements?

A.

Use a provisioned Amazon EMR cluster to copy all the data files into one folder. Use a COPY command to load the data into Amazon Redshift.

B.

Load all the data files in parallel into Amazon Aurora. Run an AWS Glue job to load the data into Amazon Redshift.

C.

Use an AWS Glue job to copy all the data files into one folder. Use a COPY command to load the data into Amazon Redshift.

D.

Create a manifest file that contains the data file locations. Use a COPY command to load the data into Amazon Redshift.

Full Access
Question # 16

A data engineer maintains a materialized view that is based on an Amazon Redshift database. The view has a column named load_date that stores the date when each row was loaded.

The data engineer needs to reclaim database storage space by deleting all the rows from the materialized view.

Which command will reclaim the MOST database storage space?

A.

Option A

B.

Option B

C.

Option C

D.

Option D

Full Access
Question # 17

A company needs to set up a data catalog and metadata management for data sources that run in the AWS Cloud. The company will use the data catalog to maintain the metadata of all the objects that are in a set of data stores. The data stores include structured sources such as Amazon RDS and Amazon Redshift. The data stores also include semistructured sources such as JSON files and .xml files that are stored in Amazon S3.

The company needs a solution that will update the data catalog on a regular basis. The solution also must detect changes to the source metadata.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use Amazon Aurora as the data catalog. Create AWS Lambda functions that will connect to the data catalog. Configure the Lambda functions to gather the metadata information from multiple sources and to update the Aurora data catalog. Schedule the Lambda functions to run periodically.

B.

Use the AWS Glue Data Catalog as the central metadata repository. Use AWS Glue crawlers to connect to multiple data stores and to update the Data Catalog with metadata changes. Schedule the crawlers to run periodically to update the metadata catalog.

C.

Use Amazon DynamoDB as the data catalog. Create AWS Lambda functions that will connect to the data catalog. Configure the Lambda functions to gather the metadata information from multiple sources and to update the DynamoDB data catalog. Schedule the Lambda functions to run periodically.

D.

Use the AWS Glue Data Catalog as the central metadata repository. Extract the schema for Amazon RDS and Amazon Redshift sources, and build the Data Catalog. Use AWS Glue crawlers for data that is in Amazon S3 to infer the schema and to automatically update the Data Catalog.

Full Access
Question # 18

A telecommunications company collects network usage data throughout each day at a rate of several thousand data points each second. The company runs an application to process the usage data in real time. The company aggregates and stores the data in an Amazon Aurora DB instance.

Sudden drops in network usage usually indicate a network outage. The company must be able to identify sudden drops in network usage so the company can take immediate remedial actions.

Which solution will meet this requirement with the LEAST latency?

A.

Create an AWS Lambda function to query Aurora for drops in network usage. Use Amazon EventBridge to automatically invoke the Lambda function every minute.

B.

Modify the processing application to publish the data to an Amazon Kinesis data stream. Create an Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) application to detect drops in network usage.

C.

Replace the Aurora database with an Amazon DynamoDB table. Create an AWS Lambda function to query the DynamoDB table for drops in network usage every minute. Use DynamoDB Accelerator (DAX) between the processing application and DynamoDB table.

D.

Create an AWS Lambda function within the Database Activity Streams feature of Aurora to detect drops in network usage.

Full Access
Question # 19

A data engineer maintains custom Python scripts that perform a data formatting process that many AWS Lambda functions use. When the data engineer needs to modify the Python scripts, the data engineer must manually update all the Lambda functions.

The data engineer requires a less manual way to update the Lambda functions.

Which solution will meet this requirement?

A.

Store a pointer to the custom Python scripts in the execution context object in a shared Amazon S3 bucket.

B.

Package the custom Python scripts into Lambda layers. Apply the Lambda layers to the Lambda functions.

C.

Store a pointer to the custom Python scripts in environment variables in a shared Amazon S3 bucket.

D.

Assign the same alias to each Lambda function. Call reach Lambda function by specifying the function's alias.

Full Access
Question # 20

A company stores CSV files in an Amazon S3 bucket. A data engineer needs to process the data in the CSV files and store the processed data in a new S3 bucket.

The process needs to rename a column, remove specific columns, ignore the second row of each file, create a new column based on the values of the first row of the data, and filter the results by a numeric value of a column.

Which solution will meet these requirements with the LEAST development effort?

A.

Use AWS Glue Python jobs to read and transform the CSV files.

B.

Use an AWS Glue custom crawler to read and transform the CSV files.

C.

Use an AWS Glue workflow to build a set of jobs to crawl and transform the CSV files.

D.

Use AWS Glue DataBrew recipes to read and transform the CSV files.

Full Access
Question # 21

A data engineer needs to create an Amazon Athena table based on a subset of data from an existing Athena table named cities_world. The cities_world table contains cities that are located around the world. The data engineer must create a new table named cities_us to contain only the cities from cities_world that are located in the US.

Which SQL statement should the data engineer use to meet this requirement?

A.

Option A

B.

Option B

C.

Option C

D.

Option D

Full Access
Question # 22

A data engineer is using Amazon Athena to analyze sales data that is in Amazon S3. The data engineer writes a query to retrieve sales amounts for 2023 for several products from a table named sales_data. However, the query does not return results for all of the products that are in the sales_data table. The data engineer needs to troubleshoot the query to resolve the issue.

The data engineer's original query is as follows:

SELECT product_name, sum(sales_amount)

FROM sales_data

WHERE year = 2023

GROUP BY product_name

How should the data engineer modify the Athena query to meet these requirements?

A.

Replace sum(sales amount) with count(*J for the aggregation.

B.

Change WHERE year = 2023 to WHERE extractlyear FROM sales data) = 2023.

C.

Add HAVING sumfsales amount) > 0 after the GROUP BY clause.

D.

Remove the GROUP BY clause

Full Access
Question # 23

A company builds a new data pipeline to process data for business intelligence reports. Users have noticed that data is missing from the reports.

A data engineer needs to add a data quality check for columns that contain null values and for referential integrity at a stage before the data is added to storage.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use Amazon SageMaker Data Wrangler to create a Data Quality and Insights report.

B.

Use AWS Glue ETL jobs to perform a data quality evaluation transform on the data. Use an IsComplete rule on the requested columns. Use a ReferentialIntegrity rule for each join.

C.

Use AWS Glue ETL jobs to perform a SQL transform on the data to determine whether requested columns contain null values. Use a second SQL transform to check referential integrity.

D.

Use Amazon SageMaker Data Wrangler and a custom Python transform to create custom rules to check for null values and referential integrity.

Full Access
Question # 24

A company has an application that uses an Amazon API Gateway REST API and an AWS Lambda function to retrieve data from an Amazon DynamoDB instance. Users recently reported intermittent high latency in the application's response times. A data engineer finds that the Lambda function experiences frequent throttling when the company's other Lambda functions experience increased invocations.

The company wants to ensure the API's Lambda function operates without being affected by other Lambda functions.

Which solution will meet this requirement MOST cost-effectively?

A.

Increase the number of read capacity unit (RCU) in DynamoDB.

B.

Configure provisioned concurrency for the Lambda function.

C.

Configure reserved concurrency for the Lambda function.

D.

Increase the Lambda function timeout and allocated memory.

Full Access
Question # 25

A data engineer uses AWS Lake Formation to manage access to data that is stored in an Amazon S3 bucket. The data engineer configures an AWS Glue crawler to discover data at a specific file location in the bucket, s3://examplepath. The crawler execution fails with the following error:

"The S3 location: s3://examplepath is not registered."

The data engineer needs to resolve the error.

A.

Attach an appropriate IAM policy to the IAM role of the AWS Glue crawler to grant the crawler permission to read the S3 location.

B.

Register the S3 location in Lake Formation to allow the crawler to access the data.

C.

Create a new AWS Glue database. Assign the correct permissions to the database for the crawler.

D.

Configure the S3 bucket policy to allow cross-account access.

Full Access
Question # 26

A company needs to implement a new inventory management system that provides near real-time updates and visibility across all AWS Regions. The new solution must provide centralized access control over data access and permissions. The company has a separate inventory management team assigned to each Region. Each inventory management team needs to update inventory levels.

A data engineer must implement Amazon Redshift data sharing with write capabilities. The solution must follow the principle of least privilege.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Configure a single Redshift datashare from the company's headquarters that provides read-only access for all Regions. Configure a separate AWS Glue ETL job to update data for each Region.

B.

Configure three Regional Redshift datashares that provide full write access. Allow full self-managed access controls.

C.

Configure a single Redshift datashare from the company's headquarters that has selective write permissions for inventory. Set up Regional namespace controls.

D.

Configure separate Redshift datashares for multiple table types that provide full write access. Distribute the datashares across all Regional clusters. Allow self-managed Regional schema permissions.

Full Access
Question # 27

A media company uses software as a service (SaaS) applications to gather data by using third-party tools. The company needs to store the data in an Amazon S3 bucket. The company will use Amazon Redshift to perform analytics based on the data.

Which AWS service or feature will meet these requirements with the LEAST operational overhead?

A.

Amazon Managed Streaming for Apache Kafka (Amazon MSK)

B.

Amazon AppFlow

C.

AWS Glue Data Catalog

D.

Amazon Kinesis

Full Access
Question # 28

A data engineer is building a new data pipeline that stores metadata in an Amazon DynamoDB table. The data engineer must ensure that all items that are older than a specified age are removed from the DynamoDB table daily.

Which solution will meet this requirement with the LEAST configuration effort?

A.

Enable DynamoDB TTL on the DynamoDB table. Adjust the application source code to set the TTL attribute appropriately.

B.

Create an Amazon EventBridge rule that uses a daily cron expression to trigger an AWS Lambda function to delete items that are older than the specified age.

C.

Add a lifecycle configuration to the DynamoDB table that deletes items that are older than the specified age.

D.

Create a DynamoDB stream that has an AWS Lambda function that reacts to data modifications. Configure the Lambda function to delete items that are older than the specified age.

Full Access
Question # 29

A company stores petabytes of data in thousands of Amazon S3 buckets in the S3 Standard storage class. The data supports analytics workloads that have unpredictable and variable data access patterns.

The company does not access some data for months. However, the company must be able to retrieve all data within milliseconds. The company needs to optimize S3 storage costs.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use S3 Storage Lens standard metrics to determine when to move objects to more cost-optimized storage classes. Create S3 Lifecycle policies for the S3 buckets to move objects to cost-optimized storage classes. Continue to refine the S3 Lifecycle policies in the future to optimize storage costs.

B.

Use S3 Storage Lens activity metrics to identify S3 buckets that the company accesses infrequently. Configure S3 Lifecycle rules to move objects from S3 Standard to the S3 Standard-Infrequent Access (S3 Standard-IA) and S3 Glacier storage classes based on the age of the data.

C.

Use S3 Intelligent-Tiering. Activate the Deep Archive Access tier.

D.

Use S3 Intelligent-Tiering. Use the default access tier.

Full Access
Question # 30

A data engineer is troubleshooting an AWS Glue workflow that occasionally fails. The engineer determines that the failures are a result of data quality issues. A business reporting team needs to receive an email notification any time the workflow fails in the future.

Which solution will meet this requirement?

A.

Create an Amazon Simple Notification Service (Amazon SNS) FIFO topic. Subscribe the team's email account to the SNS topic. Create an AWS Lambda function that initiates when the AWS Glue job state changes to FAILED. Set the SNS topic as the target.

B.

Create an Amazon Simple Notification Service (Amazon SNS) standard topic. Subscribe the team's email account to the SNS topic. Create an Amazon EventBridge rule that triggers when the AWS Glue Job state changes to FAILED. Set the SNS topic as the target.

C.

Create an Amazon Simple Queue Service (Amazon SQS) FIFO queue. Subscribe the team's email account to the SQS queue. Create an AWS Config rule that triggers when the AWS Glue job state changes to FAILED. Set the SQS queue as the target.

D.

Create an Amazon Simple Queue Service (Amazon SQS) standard queue. Subscribe the team's email account to the SQS queue. Create an Amazon EventBridge rule that triggers when the AWS Glue job state changes to FAILED. Set the SQS queue as the target.

Full Access
Question # 31

A company uses an Amazon Redshift provisioned cluster as its database. The Redshift cluster has five reserved ra3.4xlarge nodes and uses key distribution.

A data engineer notices that one of the nodes frequently has a CPU load over 90%. SQL Queries that run on the node are queued. The other four nodes usually have a CPU load under 15% during daily operations.

The data engineer wants to maintain the current number of compute nodes. The data engineer also wants to balance the load more evenly across all five compute nodes.

Which solution will meet these requirements?

A.

Change the sort key to be the data column that is most often used in a WHERE clause of the SQL SELECT statement.

B.

Change the distribution key to the table column that has the largest dimension.

C.

Upgrade the reserved node from ra3.4xlarqe to ra3.16xlarqe.

D.

Change the primary key to be the data column that is most often used in a WHERE clause of the SQL SELECT statement.

Full Access
Question # 32

A company receives call logs as Amazon S3 objects that contain sensitive customer information. The company must protect the S3 objects by using encryption. The company must also use encryption keys that only specific employees can access.

Which solution will meet these requirements with the LEAST effort?

A.

Use an AWS CloudHSM cluster to store the encryption keys. Configure the process that writes to Amazon S3 to make calls to CloudHSM to encrypt and decrypt the objects. Deploy an IAM policy that restricts access to the CloudHSM cluster.

B.

Use server-side encryption with customer-provided keys (SSE-C) to encrypt the objects that contain customer information. Restrict access to the keys that encrypt the objects.

C.

Use server-side encryption with AWS KMS keys (SSE-KMS) to encrypt the objects that contain customer information. Configure an IAM policy that restricts access to the KMS keys that encrypt the objects.

D.

Use server-side encryption with Amazon S3 managed keys (SSE-S3) to encrypt the objects that contain customer information. Configure an IAM policy that restricts access to the Amazon S3 managed keys that encrypt the objects.

Full Access
Question # 33

A company uses an on-premises Microsoft SQL Server database to store financial transaction data. The company migrates the transaction data from the on-premises database to AWS at the end of each month. The company has noticed that the cost to migrate data from the on-premises database to an Amazon RDS for SQL Server database has increased recently.

The company requires a cost-effective solution to migrate the data to AWS. The solution must cause minimal downtown for the applications that access the database.

Which AWS service should the company use to meet these requirements?

A.

AWS Lambda

B.

AWS Database Migration Service (AWS DMS)

C.

AWS Direct Connect

D.

AWS DataSync

Full Access
Question # 34

A company has a data pipeline that uses an Amazon RDS instance, AWS Glue jobs, and an Amazon S3 bucket. The RDS instance and AWS Glue jobs run in a private subnet of a VPC and in the same security group.

A use' made a change to the security group that prevents the AWS Glue jobs from connecting to the RDS instance. After the change, the security group contains a single rule that allows inbound SSH traffic from a specific IP address.

The company must resolve the connectivity issue.

Which solution will meet this requirement?

A.

Add an inbound rule that allows all TCP traffic on all TCP ports. Set the security group as the source.

B.

Add an inbound rule that allows all TCP traffic on all UDP ports. Set the private IP address of the RDS instance as the source.

C.

Add an inbound rule that allows all TCP traffic on all TCP ports. Set the DNS name of the RDS instance as the source.

D.

Replace the source of the existing SSH rule with the private IP address of the RDS instance. Create an outbound rule with the same source, destination, and protocol as the inbound SSH rule.

Full Access
Question # 35

A company is planning to use a provisioned Amazon EMR cluster that runs Apache Spark jobs to perform big data analysis. The company requires high reliability. A big data team must follow best practices for running cost-optimized and long-running workloads on Amazon EMR. The team must find a solution that will maintain the company's current level of performance.

Which combination of resources will meet these requirements MOST cost-effectively? (Choose two.)

A.

Use Hadoop Distributed File System (HDFS) as a persistent data store.

B.

Use Amazon S3 as a persistent data store.

C.

Use x86-based instances for core nodes and task nodes.

D.

Use Graviton instances for core nodes and task nodes.

E.

Use Spot Instances for all primary nodes.

Full Access
Question # 36

A retail company stores data from a product lifecycle management (PLM) application in an on-premises MySQL database. The PLM application frequently updates the database when transactions occur.

The company wants to gather insights from the PLM application in near real time. The company wants to integrate the insights with other business datasets and to analyze the combined dataset by using an Amazon Redshift data warehouse.

The company has already established an AWS Direct Connect connection between the on-premises infrastructure and AWS.

Which solution will meet these requirements with the LEAST development effort?

A.

Run a scheduled AWS Glue extract, transform, and load (ETL) job to get the MySQL database updates by using a Java Database Connectivity (JDBC) connection. Set Amazon Redshift as the destination for the ETL job.

B.

Run a full load plus CDC task in AWS Database Migration Service (AWS DMS) to continuously replicate the MySQL database changes. Set Amazon Redshift as the destination for the task.

C.

Use the Amazon AppFlow SDK to build a custom connector for the MySQL database to continuously replicate the database changes. Set Amazon Redshift as the destination for the connector.

D.

Run scheduled AWS DataSync tasks to synchronize data from the MySQL database. Set Amazon Redshift as the destination for the tasks.

Full Access
Question # 37

A company has a data processing pipeline that includes several dozen steps. The data processing pipeline needs to send alerts in real time when a step fails or succeeds. The data processing pipeline uses a combination of Amazon S3 buckets, AWS Lambda functions, and AWS Step Functions state machines.

A data engineer needs to create a solution to monitor the entire pipeline.

Which solution will meet these requirements?

A.

Configure the Step Functions state machines to store notifications in an Amazon S3 bucket when the state machines finish running. Enable S3 event notifications on the S3 bucket.

B.

Configure the AWS Lambda functions to store notifications in an Amazon S3 bucket when the state machines finish running. Enable S3 event notifications on the S3 bucket.

C.

Use AWS CloudTrail to send a message to an Amazon Simple Notification Service (Amazon SNS) topic that sends notifications when a state machine fails to run or succeeds to run.

D.

Configure an Amazon EventBridge rule to react when the execution status of a state machine changes. Configure the rule to send a message to an Amazon Simple Notification Service (Amazon SNS) topic that sends notifications.

Full Access
Question # 38

A company receives a daily file that contains customer data in .xls format. The company stores the file in Amazon S3. The daily file is approximately 2 GB in size.

A data engineer concatenates the column in the file that contains customer first names and the column that contains customer last names. The data engineer needs to determine the number of distinct customers in the file.

Which solution will meet this requirement with the LEAST operational effort?

A.

Create and run an Apache Spark job in an AWS Glue notebook. Configure the job to read the S3 file and calculate the number of distinct customers.

B.

Create an AWS Glue crawler to create an AWS Glue Data Catalog of the S3 file. Run SQL queries from Amazon Athena to calculate the number of distinct customers.

C.

Create and run an Apache Spark job in Amazon EMR Serverless to calculate the number of distinct customers.

D.

Use AWS Glue DataBrew to create a recipe that uses the COUNT_DISTINCT aggregate function to calculate the number of distinct customers.

Full Access
Question # 39

A data engineer must ingest a source of structured data that is in .csv format into an Amazon S3 data lake. The .csv files contain 15 columns. Data analysts need to run Amazon Athena queries on one or two columns of the dataset. The data analysts rarely query the entire file.

Which solution will meet these requirements MOST cost-effectively?

A.

Use an AWS Glue PySpark job to ingest the source data into the data lake in .csv format.

B.

Create an AWS Glue extract, transform, and load (ETL) job to read from the .csv structured data source. Configure the job to ingest the data into the data lake in JSON format.

C.

Use an AWS Glue PySpark job to ingest the source data into the data lake in Apache Avro format.

D.

Create an AWS Glue extract, transform, and load (ETL) job to read from the .csv structured data source. Configure the job to write the data into the data lake in Apache Parquet format.

Full Access
Question # 40

A data engineer must orchestrate a series of Amazon Athena queries that will run every day. Each query can run for more than 15 minutes.

Which combination of steps will meet these requirements MOST cost-effectively? (Choose two.)

A.

Use an AWS Lambda function and the Athena Boto3 client start_query_execution API call to invoke the Athena queries programmatically.

B.

Create an AWS Step Functions workflow and add two states. Add the first state before the Lambda function. Configure the second state as a Wait state to periodically check whether the Athena query has finished using the Athena Boto3 get_query_execution API call. Configure the workflow to invoke the next query when the current query has finished running.

C.

Use an AWS Glue Python shell job and the Athena Boto3 client start_query_execution API call to invoke the Athena queries programmatically.

D.

Use an AWS Glue Python shell script to run a sleep timer that checks every 5 minutes to determine whether the current Athena query has finished running successfully. Configure the Python shell script to invoke the next query when the current query has finished running.

E.

Use Amazon Managed Workflows for Apache Airflow (Amazon MWAA) to orchestrate the Athena queries in AWS Batch.

Full Access
Question # 41

A company uses a variety of AWS and third-party data stores. The company wants to consolidate all the data into a central data warehouse to perform analytics. Users need fast response times for analytics queries.

The company uses Amazon QuickSight in direct query mode to visualize the data. Users normally run queries during a few hours each day with unpredictable spikes.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use Amazon Redshift Serverless to load all the data into Amazon Redshift managed storage (RMS).

B.

Use Amazon Athena to load all the data into Amazon S3 in Apache Parquet format.

C.

Use Amazon Redshift provisioned clusters to load all the data into Amazon Redshift managed storage (RMS).

D.

Use Amazon Aurora PostgreSQL to load all the data into Aurora.

Full Access
Question # 42

A company extracts approximately 1 TB of data every day from data sources such as SAP HANA, Microsoft SQL Server, MongoDB, Apache Kafka, and Amazon DynamoDB. Some of the data sources have undefined data schemas or data schemas that change.

A data engineer must implement a solution that can detect the schema for these data sources. The solution must extract, transform, and load the data to an Amazon S3 bucket. The company has a service level agreement (SLA) to load the data into the S3 bucket within 15 minutes of data creation.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use Amazon EMR to detect the schema and to extract, transform, and load the data into the S3 bucket. Create a pipeline in Apache Spark.

B.

Use AWS Glue to detect the schema and to extract, transform, and load the data into the S3 bucket. Create a pipeline in Apache Spark.

C.

Create a PvSpark proqram in AWS Lambda to extract, transform, and load the data into the S3 bucket.

D.

Create a stored procedure in Amazon Redshift to detect the schema and to extract, transform, and load the data into a Redshift Spectrum table. Access the table from Amazon S3.

Full Access
Question # 43

A security company stores IoT data that is in JSON format in an Amazon S3 bucket. The data structure can change when the company upgrades the IoT devices. The company wants to create a data catalog that includes the IoT data. The company's analytics department will use the data catalog to index the data.

Which solution will meet these requirements MOST cost-effectively?

A.

Create an AWS Glue Data Catalog. Configure an AWS Glue Schema Registry. Create a new AWS Glue workload to orchestrate the ingestion of the data that the analytics department will use into Amazon Redshift Serverless.

B.

Create an Amazon Redshift provisioned cluster. Create an Amazon Redshift Spectrum database for the analytics department to explore the data that is in Amazon S3. Create Redshift stored procedures to load the data into Amazon Redshift.

C.

Create an Amazon Athena workgroup. Explore the data that is in Amazon S3 by using Apache Spark through Athena. Provide the Athena workgroup schema and tables to the analytics department.

D.

Create an AWS Glue Data Catalog. Configure an AWS Glue Schema Registry. Create AWS Lambda user defined functions (UDFs) by using the Amazon Redshift Data API. Create an AWS Step Functions job to orchestrate the ingestion of the data that the analytics department will use into Amazon Redshift Serverless.

Full Access
Question # 44

A company uses an Amazon Redshift cluster that runs on RA3 nodes. The company wants to scale read and write capacity to meet demand. A data engineer needs to identify a solution that will turn on concurrency scaling.

Which solution will meet this requirement?

A.

Turn on concurrency scaling in workload management (WLM) for Redshift Serverless workgroups.

B.

Turn on concurrency scaling at the workload management (WLM) queue level in the Redshift cluster.

C.

Turn on concurrency scaling in the settings during the creation of and new Redshift cluster.

D.

Turn on concurrency scaling for the daily usage quota for the Redshift cluster.

Full Access
Question # 45

A company uses an organization in AWS Organizations to manage multiple AWS accounts. The company uses an enhanced fanout data stream in Amazon Kinesis Data Streams to receive streaming data from multiple producers. The data stream runs in Account A. The company wants to use an AWS Lambda function in Account B to process the data from the stream. The company creates a Lambda execution role in Account B that has permissions to access data from the stream in Account A.

What additional step must the company take to meet this requirement?

A.

Create a service control policy (SCP) to grant the data stream read access to the cross-account Lambda execution role. Attach the SCP to Account A.

B.

Add a resource-based policy to the data stream to allow read access for the cross-account Lambda execution role.

C.

Create a service control policy (SCP) to grant the data stream read access to the cross-account Lambda execution role. Attach the SCP to Account B.

D.

Add a resource-based policy to the cross-account Lambda function to grant the data stream read access to the function.

Full Access
Question # 46

A company uses Amazon DataZone as a data governance and business catalog solution. The company stores data in an Amazon S3 data lake. The company uses AWS Glue with an AWS Glue Data Catalog.

A data engineer needs to publish AWS Glue Data Quality scores to the Amazon DataZone portal.

Which solution will meet this requirement?

A.

Create a data quality ruleset with Data Quality Definition Language (DQDL) rules that apply to a specific AWS Glue table. Schedule the ruleset to run daily. Configure the Amazon DataZone project to have an Amazon Redshift data source. Enable the data quality configuration for the data source.

B.

Configure AWS Glue ETL jobs to use an Evaluate Data Quality transform. Define a data quality ruleset inside the jobs. Configure the Amazon DataZone project to have an AWS Glue data source. Enable the data quality configuration for the data source.

C.

Create a data quality ruleset with Data Quality Definition Language (DQDL) rules that apply to a specific AWS Glue table. Schedule the ruleset to run daily. Configure the Amazon DataZone project to have an AWS Glue data source. Enable the data quality configuration for the data source.

D.

Configure AWS Glue ETL jobs to use an Evaluate Data Quality transform. Define a data quality ruleset inside the jobs. Configure the Amazon DataZone project to have an Amazon Redshift data source. Enable the data quality configuration for the data source.

Full Access
Question # 47

A company analyzes data in a data lake every quarter to perform inventory assessments. A data engineer uses AWS Glue DataBrew to detect any personally identifiable information (PII) about customers within the data. The company's privacy policy considers some custom categories of information to be PII. However, the categories are not included in standard DataBrew data quality rules.

The data engineer needs to modify the current process to scan for the custom PII categories across multiple datasets within the data lake.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Manually review the data for custom PII categories.

B.

Implement custom data quality rules in Data Brew. Apply the custom rules across datasets.

C.

Develop custom Python scripts to detect the custom PII categories. Call the scripts from DataBrew.

D.

Implement regex patterns to extract PII information from fields during extract transform, and load (ETL) operations into the data lake.

Full Access
Question # 48

A data engineer must manage the ingestion of real-time streaming data into AWS. The data engineer wants to perform real-time analytics on the incoming streaming data by using time-based aggregations over a window of up to 30 minutes. The data engineer needs a solution that is highly fault tolerant.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use an AWS Lambda function that includes both the business and the analytics logic to perform time-based aggregations over a window of up to 30 minutes for the data in Amazon Kinesis Data Streams.

B.

Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to analyze the data that might occasionally contain duplicates by using multiple types of aggregations.

C.

Use an AWS Lambda function that includes both the business and the analytics logic to perform aggregations for a tumbling window of up to 30 minutes, based on the event timestamp.

D.

Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to analyze the data by using multiple types of aggregations to perform time-based analytics over a window of up to 30 minutes.

Full Access
Question # 49

A data engineer configured an AWS Glue Data Catalog for data that is stored in Amazon S3 buckets. The data engineer needs to configure the Data Catalog to receive incremental updates.

The data engineer sets up event notifications for the S3 bucket and creates an Amazon Simple Queue Service (Amazon SQS) queue to receive the S3 events.

Which combination of steps should the data engineer take to meet these requirements with LEAST operational overhead? (Select TWO.)

A.

Create an S3 event-based AWS Glue crawler to consume events from the SQS queue.

B.

Define a time-based schedule to run the AWS Glue crawler, and perform incremental updates to the Data Catalog.

C.

Use an AWS Lambda function to directly update the Data Catalog based on S3 events that the SQS queue receives.

D.

Manually initiate the AWS Glue crawler to perform updates to the Data Catalog when there is a change in the S3 bucket.

E.

Use AWS Step Functions to orchestrate the process of updating the Data Catalog based on 53 events that the SQS queue receives.

Full Access
Question # 50

A company stores customer data that contains personally identifiable information (PII) in an Amazon Redshift cluster. The company's marketing, claims, and analytics teams need to be able to access the customer data.

The marketing team should have access to obfuscated claim information but should have full access to customer contact information.

The claims team should have access to customer information for each claim that the team processes.

The analytics team should have access only to obfuscated PII data.

Which solution will enforce these data access requirements with the LEAST administrative overhead?

A.

Create a separate Redshift cluster for each team. Load only the required data for each team. Restrict access to clusters based on the teams.

B.

Create views that include required fields for each of the data requirements. Grant the teams access only to the view that each team requires.

C.

Create a separate Amazon Redshift database role for each team. Define masking policies that apply for each team separately. Attach appropriate masking policies to each team role.

D.

Move the customer data to an Amazon S3 bucket. Use AWS Lake Formation to create a data lake. Use fine-grained security capabilities to grant each team appropriate permissions to access the data.

Full Access
Question # 51

A company ingests data from multiple data sources and stores the data in an Amazon S3 bucket. An AWS Glue extract, transform, and load (ETL) job transforms the data and writes the transformed data to an Amazon S3 based data lake. The company uses Amazon Athena to query the data that is in the data lake.

The company needs to identify matching records even when the records do not have a common unique identifier.

Which solution will meet this requirement?

A.

Use Amazon Made pattern matching as part of the ETL job.

B.

Train and use the AWS Glue PySpark Filter class in the ETL job.

C.

Partition tables and use the ETL job to partition the data on a unique identifier.

D.

Train and use the AWS Lake Formation FindMatches transform in the ETL job.

Full Access
Question # 52

A company receives test results from testing facilities that are located around the world. The company stores the test results in millions of 1 KB JSON files in an Amazon S3 bucket. A data engineer needs to process the files, convert them into Apache Parquet format, and load them into Amazon Redshift tables. The data engineer uses AWS Glue to process the files, AWS Step Functions to orchestrate the processes, and Amazon EventBridge to schedule jobs.

The company recently added more testing facilities. The time required to process files is increasing. The data engineer must reduce the data processing time.

Which solution will MOST reduce the data processing time?

A.

Use AWS Lambda to group the raw input files into larger files. Write the larger files back to Amazon S3. Use AWS Glue to process the files. Load the files into the Amazon Redshift tables.

B.

Use the AWS Glue dynamic frame file-grouping option to ingest the raw input files. Process the files. Load the files into the Amazon Redshift tables.

C.

Use the Amazon Redshift COPY command to move the raw input files from Amazon S3 directly into the Amazon Redshift tables. Process the files in Amazon Redshift.

D.

Use Amazon EMR instead of AWS Glue to group the raw input files. Process the files in Amazon EMR. Load the files into the Amazon Redshift tables.

Full Access
Question # 53

A data engineer needs to debug an AWS Glue job that reads from Amazon S3 and writes to Amazon Redshift. The data engineer enabled the bookmark feature for the AWS Glue job. The data engineer has set the maximum concurrency for the AWS Glue job to 1.

The AWS Glue job is successfully writing the output to Amazon Redshift. However, the Amazon S3 files that were loaded during previous runs of the AWS Glue job are being reprocessed by subsequent runs.

What is the likely reason the AWS Glue job is reprocessing the files?

A.

The AWS Glue job does not have the s3:GetObjectAcl permission that is required for bookmarks to work correctly.

B.

The maximum concurrency for the AWS Glue job is set to 1.

C.

The data engineer incorrectly specified an older version of AWS Glue for the Glue job.

D.

The AWS Glue job does not have a required commit statement.

Full Access
Question # 54

A company maintains an Amazon Redshift provisioned cluster that the company uses for extract, transform, and load (ETL) operations to support critical analysis tasks. A sales team within the company maintains a Redshift cluster that the sales team uses for business intelligence (BI) tasks.

The sales team recently requested access to the data that is in the ETL Redshift cluster so the team can perform weekly summary analysis tasks. The sales team needs to join data from the ETL cluster with data that is in the sales team's BI cluster.

The company needs a solution that will share the ETL cluster data with the sales team without interrupting the critical analysis tasks. The solution must minimize usage of the computing resources of the ETL cluster.

Which solution will meet these requirements?

A.

Set up the sales team Bl cluster as a consumer of the ETL cluster by using Redshift data sharing.

B.

Create materialized views based on the sales team's requirements. Grant the sales team direct access to the ETL cluster.

C.

Create database views based on the sales team's requirements. Grant the sales team direct access to the ETL cluster.

D.

Unload a copy of the data from the ETL cluster to an Amazon S3 bucket every week. Create an Amazon Redshift Spectrum table based on the content of the ETL cluster.

Full Access
Question # 55

A company is developing an application that runs on Amazon EC2 instances. Currently, the data that the application generates is temporary. However, the company needs to persist the data, even if the EC2 instances are terminated.

A data engineer must launch new EC2 instances from an Amazon Machine Image (AMI) and configure the instances to preserve the data.

Which solution will meet this requirement?

A.

Launch new EC2 instances by using an AMI that is backed by an EC2 instance store volume that contains the application data. Apply the default settings to the EC2 instances.

B.

Launch new EC2 instances by using an AMI that is backed by a root Amazon Elastic Block Store (Amazon EBS) volume that contains the application data. Apply the default settings to the EC2 instances.

C.

Launch new EC2 instances by using an AMI that is backed by an EC2 instance store volume. Attach an Amazon Elastic Block Store (Amazon EBS) volume to contain the application data. Apply the default settings to the EC2 instances.

D.

Launch new EC2 instances by using an AMI that is backed by an Amazon Elastic Block Store (Amazon EBS) volume. Attach an additional EC2 instance store volume to contain the application data. Apply the default settings to the EC2 instances.

Full Access
Question # 56

A retail company has a customer data hub in an Amazon S3 bucket. Employees from many countries use the data hub to support company-wide analytics. A governance team must ensure that the company's data analysts can access data only for customers who are within the same country as the analysts.

Which solution will meet these requirements with the LEAST operational effort?

A.

Create a separate table for each country's customer data. Provide access to each analyst based on the country that the analyst serves.

B.

Register the S3 bucket as a data lake location in AWS Lake Formation. Use the Lake Formation row-level security features to enforce the company's access policies.

C.

Move the data to AWS Regions that are close to the countries where the customers are. Provide access to each analyst based on the country that the analyst serves.

D.

Load the data into Amazon Redshift. Create a view for each country. Create separate 1AM roles for each country to provide access to data from each country. Assign the appropriate roles to the analysts.

Full Access
Question # 57

A company uses Amazon S3 buckets, AWS Glue tables, and Amazon Athena as components of a data lake. Recently, the company expanded its sales range to multiple new states. The company wants to introduce state names as a new partition to the existing S3 bucket, which is currently partitioned by date.

The company needs to ensure that additional partitions will not disrupt daily synchronization between the AWS Glue Data Catalog and the S3 buckets.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use the AWS Glue API to manually update the Data Catalog.

B.

Run an MSCK REPAIR TABLE command in Athena.

C.

Schedule an AWS Glue crawler to periodically update the Data Catalog.

D.

Run a REFRESH TABLE command in Athena.

Full Access
Question # 58

A company stores customer data in an Amazon S3 bucket. The company must permanently delete all customer data that is older than 7 years.

A.

Configure an S3 Lifecycle policy to permanently delete objects that are older than 7 years.

B.

Use Amazon Athena to query the S3 bucket for objects that are older than 7 years. Configure Athena to delete the results.

C.

Configure an S3 Lifecycle policy to move objects that are older than 7 years to S3 Glacier Deep Archive.

D.

Configure an S3 Lifecycle policy to enable S3 Object Lock on all objects that are older than 7 years.

Full Access
Question # 59

A financial company recently added more features to its mobile app. The new features required the company to create a new topic in an existing Amazon Managed Streaming for Apache Kafka (Amazon MSK) cluster.

A few days after the company added the new topic, Amazon CloudWatch raised an alarm on the RootDiskUsed metric for the MSK cluster.

How should the company address the CloudWatch alarm?

A.

Expand the storage of the MSK broker. Configure the MSK cluster storage to expand automatically.

B.

Expand the storage of the Apache ZooKeeper nodes.

C.

Update the MSK broker instance to a larger instance type. Restart the MSK cluster.

D.

Specify the Target-Volume-in-GiB parameter for the existing topic.

Full Access
Question # 60

A company saves customer data to an Amazon S3 bucket. The company uses server-side encryption with AWS KMS keys (SSE-KMS) to encrypt the bucket. The dataset includes personally identifiable information (PII) such as social security numbers and account details.

Data that is tagged as PII must be masked before the company uses customer data for analysis. Some users must have secure access to the PII data during the preprocessing phase. The company needs a low-maintenance solution to mask and secure the PII data throughout the entire engineering pipeline.

Which combination of solutions will meet these requirements? (Select TWO.)

A.

Use AWS Glue DataBrew to perform extract, transform, and load (ETL) tasks that mask the PII data before analysis.

B.

Use Amazon GuardDuty to monitor access patterns for the PII data that is used in the engineering pipeline.

C.

Configure an Amazon Made discovery job for the S3 bucket.

D.

Use AWS Identity and Access Management (IAM) to manage permissions and to control access to the PII data.

E.

Write custom scripts in an application to mask the PII data and to control access.

Full Access
Question # 61

A technology company currently uses Amazon Kinesis Data Streams to collect log data in real time. The company wants to use Amazon Redshift for downstream real-time queries and to enrich the log data.

Which solution will ingest data into Amazon Redshift with the LEAST operational overhead?

A.

Set up an Amazon Data Firehose delivery stream to send data to a Redshift provisioned cluster table.

B.

Set up an Amazon Data Firehose delivery stream to send data to Amazon S3. Configure a Redshift provisioned cluster to load data every minute.

C.

Configure Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to send data directly to a Redshift provisioned cluster table.

D.

Use Amazon Redshift streaming ingestion from Kinesis Data Streams and to present data as a materialized view.

Full Access
Question # 62

A data engineer is building a data pipeline on AWS by using AWS Glue extract, transform, and load (ETL) jobs. The data engineer needs to process data from Amazon RDS and MongoDB, perform transformations, and load the transformed data into Amazon Redshift for analytics. The data updates must occur every hour.

Which combination of tasks will meet these requirements with the LEAST operational overhead? (Choose two.)

A.

Configure AWS Glue triggers to run the ETL jobs even/ hour.

B.

Use AWS Glue DataBrewto clean and prepare the data for analytics.

C.

Use AWS Lambda functions to schedule and run the ETL jobs even/ hour.

D.

Use AWS Glue connections to establish connectivity between the data sources and Amazon Redshift.

E.

Use the Redshift Data API to load transformed data into Amazon Redshift.

Full Access
Question # 63

A data engineer is configuring an AWS Glue Apache Spark extract, transform, and load (ETL) job. The job contains a sort-merge join of two large and equally sized DataFrames.

The job is failing with the following error: No space left on device.

Which solution will resolve the error?

A.

Use the AWS Glue Spark shuffle manager.

B.

Deploy an Amazon Elastic Block Store (Amazon EBS) volume for the job to use.

C.

Convert the sort-merge join in the job to be a broadcast join.

D.

Convert the DataFrames to DynamicFrames, and perform a DynamicFrame join in the job.

Full Access
Question # 64

A financial services company stores financial data in Amazon Redshift. A data engineer wants to run real-time queries on the financial data to support a web-based trading application. The data engineer wants to run the queries from within the trading application.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Establish WebSocket connections to Amazon Redshift.

B.

Use the Amazon Redshift Data API.

C.

Set up Java Database Connectivity (JDBC) connections to Amazon Redshift.

D.

Store frequently accessed data in Amazon S3. Use Amazon S3 Select to run the queries.

Full Access
Question # 65

A data engineer needs to maintain a central metadata repository that users access through Amazon EMR and Amazon Athena queries. The repository needs to provide the schema and properties of many tables. Some of the metadata is stored in Apache Hive. The data engineer needs to import the metadata from Hive into the central metadata repository.

Which solution will meet these requirements with the LEAST development effort?

A.

Use Amazon EMR and Apache Ranger.

B.

Use a Hive metastore on an EMR cluster.

C.

Use the AWS Glue Data Catalog.

D.

Use a metastore on an Amazon RDS for MySQL DB instance.

Full Access