A data engineer wants to orchestrate a set of extract, transform, and load (ETL) jobs that run on AWS. The ETL jobs contain tasks that must run Apache Spark jobs on Amazon EMR, make API calls to Salesforce, and load data into Amazon Redshift.
The ETL jobs need to handle failures and retries automatically. The data engineer needs to use Python to orchestrate the jobs.
Which service will meet these requirements?
A company uses an Amazon Redshift cluster as a data warehouse that is shared across two departments. To comply with a security policy, each department must have unique access permissions.
Department A must have access to tables and views for Department A. Department B must have access to tables and views for Department B.
The company often runs SQL queries that use objects from both departments in one query.
Which solution will meet these requirements with the LEAST operational overhead?
A company uses an on-premises Microsoft SQL Server database to store financial transaction data. The company migrates the transaction data from the on-premises database to AWS at the end of each month. The company has noticed that the cost to migrate data from the on-premises database to an Amazon RDS for SQL Server database has increased recently.
The company requires a cost-effective solution to migrate the data to AWS. The solution must cause minimal downtown for the applications that access the database.
Which AWS service should the company use to meet these requirements?
A company stores its processed data in an S3 bucket. The company has a strict data access policy. The company uses IAM roles to grant teams within the company different levels of access to the S3 bucket.
The company wants to receive notifications when a user violates the data access policy. Each notification must include the username of the user who violated the policy.
Which solution will meet these requirements?
A company has used an Amazon Redshift table that is named Orders for 6 months. The company performs weekly updates and deletes on the table. The table has an interleaved sort key on a column that contains AWS Regions.
The company wants to reclaim disk space so that the company will not run out of storage space. The company also wants to analyze the sort key column.
Which Amazon Redshift command will meet these requirements?
A company extracts approximately 1 TB of data every day from data sources such as SAP HANA, Microsoft SQL Server, MongoDB, Apache Kafka, and Amazon DynamoDB. Some of the data sources have undefined data schemas or data schemas that change.
A data engineer must implement a solution that can detect the schema for these data sources. The solution must extract, transform, and load the data to an Amazon S3 bucket. The company has a service level agreement (SLA) to load the data into the S3 bucket within 15 minutes of data creation.
Which solution will meet these requirements with the LEAST operational overhead?
A data engineer configured an AWS Glue Data Catalog for data that is stored in Amazon S3 buckets. The data engineer needs to configure the Data Catalog to receive incremental updates.
The data engineer sets up event notifications for the S3 bucket and creates an Amazon Simple Queue Service (Amazon SQS) queue to receive the S3 events.
Which combination of steps should the data engineer take to meet these requirements with LEAST operational overhead? (Select TWO.)
A company is planning to migrate on-premises Apache Hadoop clusters to Amazon EMR. The company also needs to migrate a data catalog into a persistent storage solution.
The company currently stores the data catalog in an on-premises Apache Hive metastore on the Hadoop clusters. The company requires a serverless solution to migrate the data catalog.
Which solution will meet these requirements MOST cost-effectively?
A company receives a data file from a partner each day in an Amazon S3 bucket. The company uses a daily AW5 Glue extract, transform, and load (ETL) pipeline to clean and transform each data file. The output of the ETL pipeline is written to a CSV file named Dairy.csv in a second 53 bucket.
Occasionally, the daily data file is empty or is missing values for required fields. When the file is missing data, the company can use the previous day's CSV file.
A data engineer needs to ensure that the previous day's data file is overwritten only if the new daily file is complete and valid.
Which solution will meet these requirements with the LEAST effort?
A company has an application that uses an Amazon API Gateway REST API and an AWS Lambda function to retrieve data from an Amazon DynamoDB instance. Users recently reported intermittent high latency in the application's response times. A data engineer finds that the Lambda function experiences frequent throttling when the company's other Lambda functions experience increased invocations.
The company wants to ensure the API's Lambda function operates without being affected by other Lambda functions.
Which solution will meet this requirement MOST cost-effectively?
A company receives call logs as Amazon S3 objects that contain sensitive customer information. The company must protect the S3 objects by using encryption. The company must also use encryption keys that only specific employees can access.
Which solution will meet these requirements with the LEAST effort?
A data engineer needs to securely transfer 5 TB of data from an on-premises data center to an Amazon S3 bucket. Approximately 5% of the data changes every day. Updates to the data need to be regularly proliferated to the S3 bucket. The data includes files that are in multiple formats. The data engineer needs to automate the transfer process and must schedule the process to run periodically.
Which AWS service should the data engineer use to transfer the data in the MOST operationally efficient way?
A data engineer needs to join data from multiple sources to perform a one-time analysis job. The data is stored in Amazon DynamoDB, Amazon RDS, Amazon Redshift, and Amazon S3.
Which solution will meet this requirement MOST cost-effectively?
A retail company is expanding its operations globally. The company needs to use Amazon QuickSight to accurately calculate currency exchange rates for financial reports. The company has an existing dashboard that includes a visual that is based on an analysis of a dataset that contains global currency values and exchange rates.
A data engineer needs to ensure that exchange rates are calculated with a precision of four decimal places. The calculations must be precomputed. The data engineer must materialize results in QuickSight super-fast, parallel, in-memory calculation engine (SPICE).
Which solution will meet these requirements?
A company wants to ingest streaming data into an Amazon Redshift data warehouse from an Amazon Managed Streaming for Apache Kafka (Amazon MSK) cluster. A data engineer needs to develop a solution that provides low data access time and that optimizes storage costs.
Which solution will meet these requirements with the LEAST operational overhead?
A retail company stores data from a product lifecycle management (PLM) application in an on-premises MySQL database. The PLM application frequently updates the database when transactions occur.
The company wants to gather insights from the PLM application in near real time. The company wants to integrate the insights with other business datasets and to analyze the combined dataset by using an Amazon Redshift data warehouse.
The company has already established an AWS Direct Connect connection between the on-premises infrastructure and AWS.
Which solution will meet these requirements with the LEAST development effort?
A company wants to migrate a data warehouse from Teradata to Amazon Redshift. Which solution will meet this requirement with the LEAST operational effort?
A company builds a new data pipeline to process data for business intelligence reports. Users have noticed that data is missing from the reports.
A data engineer needs to add a data quality check for columns that contain null values and for referential integrity at a stage before the data is added to storage.
Which solution will meet these requirements with the LEAST operational overhead?
A company stores a large dataset in an Amazon S3 bucket. A data engineer frequently runs complex queries on the dataset by using Amazon Athena. The data engineer needs to optimize query performance and optimize costs for queries that are run multiple times with the same parameters.
Which solution will meet these requirements?
A data engineer is using an Apache Iceberg framework to build a data lake that contains 100 TB of data. The data engineer wants to run AWS Glue Apache Spark Jobs that use the Iceberg framework.
What combination of steps will meet these requirements? (Select TWO.)
A data engineer is designing a new data lake architecture for a company. The data engineer plans to use Apache Iceberg tables and AWS Glue Data Catalog to achieve fast query performance and enhanced metadata handling. The data engineer needs to query historical data for trend analysis and optimize storage costs for a large volume of event data.
Which solution will meet these requirements with the LEAST development effort?
A company stores datasets in JSON format and .csv format in an Amazon S3 bucket. The company has Amazon RDS for Microsoft SQL Server databases, Amazon DynamoDB tables that are in provisioned capacity mode, and an Amazon Redshift cluster. A data engineering team must develop a solution that will give data scientists the ability to query all data sources by using syntax similar to SQL.
Which solution will meet these requirements with the LEAST operational overhead?
A company receives a daily file that contains customer data in .xls format. The company stores the file in Amazon S3. The daily file is approximately 2 GB in size.
A data engineer concatenates the column in the file that contains customer first names and the column that contains customer last names. The data engineer needs to determine the number of distinct customers in the file.
Which solution will meet this requirement with the LEAST operational effort?
A company maintains an Amazon Redshift provisioned cluster that the company uses for extract, transform, and load (ETL) operations to support critical analysis tasks. A sales team within the company maintains a Redshift cluster that the sales team uses for business intelligence (BI) tasks.
The sales team recently requested access to the data that is in the ETL Redshift cluster so the team can perform weekly summary analysis tasks. The sales team needs to join data from the ETL cluster with data that is in the sales team's BI cluster.
The company needs a solution that will share the ETL cluster data with the sales team without interrupting the critical analysis tasks. The solution must minimize usage of the computing resources of the ETL cluster.
Which solution will meet these requirements?
A data engineer develops an AWS Glue Apache Spark ETL job to perform transformations on a dataset. When the data engineer runs the job, the job returns an error that reads, "No space left on device."
The data engineer needs to identify the source of the error and provide a solution.
Which combinations of steps will meet this requirement MOST cost-effectively? (Select TWO.)
A company currently stores all of its data in Amazon S3 by using the S3 Standard storage class.
A data engineer examined data access patterns to identify trends. During the first 6 months, most data files are accessed several times each day. Between 6 months and 2 years, most data files are accessed once or twice each month. After 2 years, data files are accessed only once or twice each year.
The data engineer needs to use an S3 Lifecycle policy to develop new data storage rules. The new storage solution must continue to provide high availability.
Which solution will meet these requirements in the MOST cost-effective way?
A retail company uses an Amazon Redshift data warehouse and an Amazon S3 bucket. The company ingests retail order data into the S3 bucket every day.
The company stores all order data at a single path within the S3 bucket. The data has more than 100 columns. The company ingests the order data from a third-party application that generates more than 30 files in CSV format every day. Each CSV file is between 50 and 70 MB in size.
The company uses Amazon Redshift Spectrum to run queries that select sets of columns. Users aggregate metrics based on daily orders. Recently, users have reported that the performance of the queries has degraded. A data engineer must resolve the performance issues for the queries.
Which combination of steps will meet this requirement with LEAST developmental effort? (Select TWO.)
A company is setting up a data pipeline in AWS. The pipeline extracts client data from Amazon S3 buckets, performs quality checks, and transforms the data. The pipeline stores the processed data in a relational database. The company will use the processed data for future queries.
Which solution will meet these requirements MOST cost-effectively?
A data engineer needs to run a data transformation job whenever a user adds a file to an Amazon S3 bucket. The job will run for less than 1 minute. The job must send the output through an email message to the data engineer. The data engineer expects users to add one file every hour of the day.
Which solution will meet these requirements in the MOST operationally efficient way?
A data engineer is optimizing query performance in Amazon Athena notebooks that use Apache Spark to analyze large datasets that are stored in Amazon S3. The data is partitioned. An AWS Glue crawler updates the partitions.
The data engineer wants to minimize the amount of data that is scanned to improve efficiency of Athena queries.
Which solution will meet these requirements?
A banking company uses an application to collect large volumes of transactional data. The company uses Amazon Kinesis Data Streams for real-time analytics. The company's application uses the PutRecord action to send data to Kinesis Data Streams.
A data engineer has observed network outages during certain times of day. The data engineer wants to configure exactly-once delivery for the entire processing pipeline.
Which solution will meet this requirement?
A company saves customer data to an Amazon S3 bucket. The company uses server-side encryption with AWS KMS keys (SSE-KMS) to encrypt the bucket. The dataset includes personally identifiable information (PII) such as social security numbers and account details.
Data that is tagged as PII must be masked before the company uses customer data for analysis. Some users must have secure access to the PII data during the preprocessing phase. The company needs a low-maintenance solution to mask and secure the PII data throughout the entire engineering pipeline.
Which combination of solutions will meet these requirements? (Select TWO.)
A company stores logs in an Amazon S3 bucket. When a data engineer attempts to access several log files, the data engineer discovers that some files have been unintentionally deleted.
The data engineer needs a solution that will prevent unintentional file deletion in the future.
Which solution will meet this requirement with the LEAST operational overhead?
A company uses AWS Step Functions to orchestrate a data pipeline. The pipeline consists of Amazon EMR jobs that ingest data from data sources and store the data in an Amazon S3 bucket. The pipeline also includes EMR jobs that load the data to Amazon Redshift.
The company's cloud infrastructure team manually built a Step Functions state machine. The cloud infrastructure team launched an EMR cluster into a VPC to support the EMR jobs. However, the deployed Step Functions state machine is not able to run the EMR jobs.
Which combination of steps should the company take to identify the reason the Step Functions state machine is not able to run the EMR jobs? (Choose two.)
A company stores server logs in an Amazon 53 bucket. The company needs to keep the logs for 1 year. The logs are not required after 1 year.
A data engineer needs a solution to automatically delete logs that are older than 1 year.
Which solution will meet these requirements with the LEAST operational overhead?
A company needs to load customer data that comes from a third party into an Amazon Redshift data warehouse. The company stores order data and product data in the same data warehouse. The company wants to use the combined dataset to identify potential new customers.
A data engineer notices that one of the fields in the source data includes values that are in JSON format.
How should the data engineer load the JSON data into the data warehouse with the LEAST effort?
A company uses an Amazon QuickSight dashboard to monitor usage of one of the company's applications. The company uses AWS Glue jobs to process data for the dashboard. The company stores the data in a single Amazon S3 bucket. The company adds new data every day.
A data engineer discovers that dashboard queries are becoming slower over time. The data engineer determines that the root cause of the slowing queries is long-running AWS Glue jobs.
Which actions should the data engineer take to improve the performance of the AWS Glue jobs? (Choose two.)
A company is developing an application that runs on Amazon EC2 instances. Currently, the data that the application generates is temporary. However, the company needs to persist the data, even if the EC2 instances are terminated.
A data engineer must launch new EC2 instances from an Amazon Machine Image (AMI) and configure the instances to preserve the data.
Which solution will meet this requirement?
A company has a data pipeline that uses an Amazon RDS instance, AWS Glue jobs, and an Amazon S3 bucket. The RDS instance and AWS Glue jobs run in a private subnet of a VPC and in the same security group.
A use' made a change to the security group that prevents the AWS Glue jobs from connecting to the RDS instance. After the change, the security group contains a single rule that allows inbound SSH traffic from a specific IP address.
The company must resolve the connectivity issue.
Which solution will meet this requirement?
A company wants to use Apache Spark jobs that run on an Amazon EMR cluster to process streaming data. The Spark jobs will transform and store the data in an Amazon S3 bucket. The company will use Amazon Athena to perform analysis.
The company needs to optimize the data format for analytical queries.
Which solutions will meet these requirements with the SHORTEST query times? (Select TWO.)
A company has a gaming application that stores data in Amazon DynamoDB tables. A data engineer needs to ingest the game data into an Amazon OpenSearch Service cluster. Data updates must occur in near real time.
Which solution will meet these requirements?
A company maintains multiple extract, transform, and load (ETL) workflows that ingest data from the company's operational databases into an Amazon S3 based data lake. The ETL workflows use AWS Glue and Amazon EMR to process data.
The company wants to improve the existing architecture to provide automated orchestration and to require minimal manual effort.
Which solution will meet these requirements with the LEAST operational overhead?
A company has a data lake in Amazon S3. The company collects AWS CloudTrail logs for multiple applications. The company stores the logs in the data lake, catalogs the logs in AWS Glue, and partitions the logs based on the year. The company uses Amazon Athena to analyze the logs.
Recently, customers reported that a query on one of the Athena tables did not return any data. A data engineer must resolve the issue.
Which combination of troubleshooting steps should the data engineer take? (Select TWO.)
A data engineer is processing a large amount of log data from web servers. The data is stored in an Amazon S3 bucket. The data engineer uses AWS services to process the data every day. The data engineer needs to extract specific fields from the raw log data and load the data into a data warehouse for analysis.
A data engineer uses Amazon Redshift to run resource-intensive analytics processes once every month. Every month, the data engineer creates a new Redshift provisioned cluster. The data engineer deletes the Redshift provisioned cluster after the analytics processes are complete every month. Before the data engineer deletes the cluster each month, the data engineer unloads backup data from the cluster to an Amazon S3 bucket.
The data engineer needs a solution to run the monthly analytics processes that does not require the data engineer to manage the infrastructure manually.
Which solution will meet these requirements with the LEAST operational overhead?
A company is designing a serverless data processing workflow in AWS Step Functions that involves multiple steps. The processing workflow ingests data from an external API, transforms the data by using multiple AWS Lambda functions, and loads the transformed data into Amazon DynamoDB.
The company needs the workflow to perform specific steps based on the content of the incoming data.
Which Step Functions state type should the company use to meet this requirement?
A data engineer is configuring Amazon SageMaker Studio to use AWS Glue interactive sessions to prepare data for machine learning (ML) models.
The data engineer receives an access denied error when the data engineer tries to prepare the data by using SageMaker Studio.
Which change should the engineer make to gain access to SageMaker Studio?
A company uses an Amazon Redshift provisioned cluster as its database. The Redshift cluster has five reserved ra3.4xlarge nodes and uses key distribution.
A data engineer notices that one of the nodes frequently has a CPU load over 90%. SQL Queries that run on the node are queued. The other four nodes usually have a CPU load under 15% during daily operations.
The data engineer wants to maintain the current number of compute nodes. The data engineer also wants to balance the load more evenly across all five compute nodes.
Which solution will meet these requirements?
A company has multiple applications that use datasets that are stored in an Amazon S3 bucket. The company has an ecommerce application that generates a dataset that contains personally identifiable information (PII). The company has an internal analytics application that does not require access to the PII.
To comply with regulations, the company must not share PII unnecessarily. A data engineer needs to implement a solution that with redact PII dynamically, based on the needs of each application that accesses the dataset.
Which solution will meet the requirements with the LEAST operational overhead?
A company stores sensitive transaction data in an Amazon S3 bucket. A data engineer must implement controls to prevent accidental deletions.
A company created an extract, transform, and load (ETL) data pipeline in AWS Glue. A data engineer must crawl a table that is in Microsoft SQL Server. The data engineer needs to extract, transform, and load the output of the crawl to an Amazon S3 bucket. The data engineer also must orchestrate the data pipeline.
Which AWS service or feature will meet these requirements MOST cost-effectively?
A company uses Amazon DataZone as a data governance and business catalog solution. The company stores data in an Amazon S3 data lake. The company uses AWS Glue with an AWS Glue Data Catalog.
A data engineer needs to publish AWS Glue Data Quality scores to the Amazon DataZone portal.
Which solution will meet this requirement?
A company is planning to use a provisioned Amazon EMR cluster that runs Apache Spark jobs to perform big data analysis. The company requires high reliability. A big data team must follow best practices for running cost-optimized and long-running workloads on Amazon EMR. The team must find a solution that will maintain the company's current level of performance.
Which combination of resources will meet these requirements MOST cost-effectively? (Choose two.)
A manufacturing company collects sensor data from its factory floor to monitor and enhance operational efficiency. The company uses Amazon Kinesis Data Streams to publish the data that the sensors collect to a data stream. Then Amazon Kinesis Data Firehose writes the data to an Amazon S3 bucket.
The company needs to display a real-time view of operational efficiency on a large screen in the manufacturing facility.
Which solution will meet these requirements with the LOWEST latency?
A data engineer needs to onboard a new data producer into AWS. The data producer needs to migrate data products to AWS.
The data producer maintains many data pipelines that support a business application. Each pipeline must have service accounts and their corresponding credentials. The data engineer must establish a secure connection from the data producer's on-premises data center to AWS. The data engineer must not use the public internet to transfer data from an on-premises data center to AWS.
Which solution will meet these requirements?
A company has five offices in different AWS Regions. Each office has its own human resources (HR) department that uses a unique IAM role. The company stores employee records in a data lake that is based on Amazon S3 storage.
A data engineering team needs to limit access to the records. Each HR department should be able to access records for only employees who are within the HR department's Region.
Which combination of steps should the data engineering team take to meet this requirement with the LEAST operational overhead? (Choose two.)
A company stores daily records of the financial performance of investment portfolios in .csv format in an Amazon S3 bucket. A data engineer uses AWS Glue crawlers to crawl the S3 data.
The data engineer must make the S3 data accessible daily in the AWS Glue Data Catalog.
Which solution will meet these requirements?
A company stores customer data that contains personally identifiable information (PII) in an Amazon Redshift cluster. The company's marketing, claims, and analytics teams need to be able to access the customer data.
The marketing team should have access to obfuscated claim information but should have full access to customer contact information.
The claims team should have access to customer information for each claim that the team processes.
The analytics team should have access only to obfuscated PII data.
Which solution will enforce these data access requirements with the LEAST administrative overhead?
A company uses AWS Glue ETL pipelines to process data. The company uses Amazon Athena to analyze data in an Amazon S3 bucket.
To better understand shipping timelines, the company decides to collect and store shipping dates and delivery dates in addition to order data. The company adds a data quality check to ensure that the shipping date is later than the order date and that the delivery date is later than the shipping date. Orders that fail the quality check must be stored in a second Amazon S3 bucket.
Which solution will meet these requirements in the MOST cost-effective way?
A data engineer is building a data pipeline on AWS by using AWS Glue extract, transform, and load (ETL) jobs. The data engineer needs to process data from Amazon RDS and MongoDB, perform transformations, and load the transformed data into Amazon Redshift for analytics. The data updates must occur every hour.
Which combination of tasks will meet these requirements with the LEAST operational overhead? (Choose two.)
A company stores CSV files in an Amazon S3 bucket. A data engineer needs to process the data in the CSV files and store the processed data in a new S3 bucket.
The process needs to rename a column, remove specific columns, ignore the second row of each file, create a new column based on the values of the first row of the data, and filter the results by a numeric value of a column.
Which solution will meet these requirements with the LEAST development effort?
A company has a data warehouse that contains a table that is named Sales. The company stores the table in Amazon Redshift The table includes a column that is named city_name. The company wants to query the table to find all rows that have a city_name that starts with "San" or "El."
Which SQL query will meet this requirement?
A data engineer maintains custom Python scripts that perform a data formatting process that many AWS Lambda functions use. When the data engineer needs to modify the Python scripts, the data engineer must manually update all the Lambda functions.
The data engineer requires a less manual way to update the Lambda functions.
Which solution will meet this requirement?
A company is building an inventory management system and an inventory reordering system to automatically reorder products. Both systems use Amazon Kinesis Data Streams. The inventory management system uses the Amazon Kinesis Producer Library (KPL) to publish data to a stream. The inventory reordering system uses the Amazon Kinesis Client Library (KCL) to consume data from the stream. The company configures the stream to scale up and down as needed.
Before the company deploys the systems to production, the company discovers that the inventory reordering system received duplicated data.
Which factors could have caused the reordering system to receive duplicated data? (Select TWO.)
A telecommunications company collects network usage data throughout each day at a rate of several thousand data points each second. The company runs an application to process the usage data in real time. The company aggregates and stores the data in an Amazon Aurora DB instance.
Sudden drops in network usage usually indicate a network outage. The company must be able to identify sudden drops in network usage so the company can take immediate remedial actions.
Which solution will meet this requirement with the LEAST latency?
A data engineer needs to deploy a complex pipeline. The stages of the pipeline must run scripts, but only fully managed and serverless services can be used.
A company needs to partition the Amazon S3 storage that the company uses for a data lake. The partitioning will use a path of the S3 object keys in the following format: s3://bucket/prefix/year=2023/month=01/day=01.
A data engineer must ensure that the AWS Glue Data Catalog synchronizes with the S3 storage when the company adds new partitions to the bucket.
Which solution will meet these requirements with the LEAST latency?